首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Origin of Dihydroorotate Dehydrogenase Genes of Kinetoplastids, with Special Reference to Their Biological Significance and Adaptation to Anaerobic, Parasitic Conditions
Authors:Takeshi Annoura  Takeshi Nara  Takashi Makiuchi  Tetsuo Hashimoto  Takashi Aoki
Institution:(1) Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku Tokyo, 113-8421, Japan;(2) Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Horinouchi 1432-1, Hachioji Tokyo, 192-0392, Japan;(3) Institute of Biological Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba Ibaraki, 305-8575, Japan
Abstract:Trypanosoma cruzi dihydroorotate dehydrogenase (DHOD), the fourth enzyme of the de novo pyrimidine biosynthetic pathway, is localized in the cytosol and utilizes fumarate as electron acceptor (fumarate reductase activity), while the enzyme from other various eukaryotes is mitochondrial membrane-linked. Here we report that DHOD-knockout T. cruzi did not express the enzyme protein and could not survive even in the presence of pyrimidine nucleosides, substrates for the potentially active salvage pathway, suggesting a vital role of fumarate reductase activity in the regulation of cellular redox balance. Cloning and phylogenetic analysis of euglenozoan DHOD genes showed that the euglenoid Euglena gracilis had a mitochondrial DHOD and that biflagellated bodonids, a sister group of trypanosomatids within kinetoplastids, harbor the cytosolic DHOD. Further, Bodo saliens, a bodonid, had an ACT/DHOD gene fusion encoding aspartate carbamoyltransferase (ACT), the second enzyme of the de novo pyrimidine pathway, and DHOD. This is the first report of this novel gene structure. These results are consistent with suggestions that an ancient common ancestor of Euglenozoa had a mitochondrial DHOD whose descendant exists in E. gracilis and that a common ancestor of kinetoplastids (bodonids and trypanosomatids) subsequently acquired a cytosolic DHOD by horizontal gene transfer. The cytosolic DHOD gene thus acquired may have contributed to adaptation to anaerobiosis in the kinetoplastid lineage and further contributed to the subsequent establishment of parasitism in a trypanosomatid ancestor. Different molecular strategies for anaerobic adaptation in pyrimidine biosynthesis, used by kinetoplastids and by euglenoids, are discussed. Evolutionary implications of the ACT/DHOD gene fusion are also discussed.Sequence availability: The nucleotide sequence data reported here appear in the GenBank, EMBL, and DDBJ databases with the accession numbers AB120414, AB159227, and AB159228 for Euglena gracilis dihydroorotate dehydrogenase (DHOD), Bodo saliens aspartate carbamoyltransferase/dihydroorotate dehydrogenase (ACT/DHOD), and B. caudatus DHOD, respectively.Reviewing Editor: Dr. Patrick Keeling
Keywords:Dihydroorotate dehydrogenase  Trypanosoma cruzi  Bodonid  Kinetoplastid  Euglenozoa  Phylogenetic tree  Gene fusion  Horizontal gene transfer  Anaerobiosis
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号