首页 | 本学科首页   官方微博 | 高级检索  
     


Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species
Authors:Mittova Valentina  Tal Moshe  Volokita Micha  Guy Micha
Affiliation:The Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel; Department of Life Science, Ben-Gurion University of the Negev, PO Box 653, Beer Sheva 84105, Israel
Abstract:The response of the chloroplastic antioxidant system of the cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species L. pennellii (Lpa) to NaCl stress was studied. An increase in H2O2 level and membrane lipid peroxidation was observed in chloroplasts of salt-stressed Lem. In contrast, a decrease in these indicators of oxidative stress characterized chloroplasts of salt-stressed Lpa plants. This differential response of Lem and Lpa to salinity, correlates with the activities of the antioxidative enzymes in their chloroplasts. Increased activities of total superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione-S-transferase (GST), phospholipid hydroperoxide glutathione peroxidase (PHGPX) and several isoforms of non-specific peroxidases (POD) were found in chloroplasts of salt-treated Lpa plants. In these chloroplasts, in contrast, activity of lipoxygenase (LOX) decreased while in those of salt-stressed Lem it increased. Although total SOD activity slightly increased in chloroplasts of salt-treated Lem plants, differentiation between SOD types revealed that only stromal Cu/ZnSOD activity increased. In contrast, in chloroplasts of salt-treated Lpa plants FeSOD activity increased while Cu/ZnSOD activity remained unchanged. These data indicate that salt-dependent oxidative stress and damage, suffered by Lem chloroplasts, was effectively alleviated in Lpa chloroplasts by the selective up-regulation of a set of antioxidative enzymes. Further support for the above idea was supplied by leaf discs experiments in which pre-exposure of Lpa plants to salt-treatment conferred cross-tolerance to paraquat-induced oxidative stress while increased oxidative damage by paraquat-treatment was found in salt-stressed Lem plants.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号