首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of hyperosmolarity on ligand processing and receptor recycling in the hepatic galactosyl receptor system
Authors:J A Oka  P H Weigel
Institution:Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550.
Abstract:Binding, endocytosis, and degradation of asialo-orosomucoid (ASOR) mediated by the galactosyl (Gal) receptor were examined in isolated rat hepatocytes in complete media supplemented with an osmolite. The specific binding of 125I-ASOR to cells at 4 degrees C was unaffected by up to 0.4 M sucrose or NaCl. Unlike sucrose or NaCl, mannitol stimulated 125I-ASOR binding at low concentrations but inhibited binding at higher concentrations. Continuous internalization at 37 degrees C, which requires receptor recycling, was completely blocked at 0.2 M sucrose or 0.15 M NaCl, corresponding in each case to a total osmolality of about 550 mmol/kg. This effect was reversed and endocytic function was restored by washing the cells, indicating that cell viability was unaffected. The rate of degradation of internalized 125I-ASOR was also inhibited by increasing sucrose concentrations. This inhibition is due to a block in the delivery of ligand to lysosomes and not an effect on degradation per se. In the presence of 0.2 M sucrose, the rate and extent of endocytosis of surface-bound 125I-ASOR were, respectively, 33.0 +/- 8.1% and 69.4 +/- 10.5% (n = 8) of the control without sucrose. Under these conditions, the dissociation of internalized receptor-ASOR complexes was completely inhibited. When sucrose was added, the effect on the endocytosis of surface-bound 125I-ASOR was virtually immediate. Previous studies showed that about 40% of the surface-bound 125I-ASOR which is internalized can return to the cell surface still bound to receptor (Weigel and Oka: J Biol Chem 259:1150, 1984). If 0.2 M sucrose was added after endocytosis occurred, 125I-ASOR still returned to the cell surface, although the rate and extent of return were inhibited by more than 50%. Interestingly, hyperosmolarity is the only treatment we have found which can reversibly inhibit, although only partially, the endocytosis of surface-bound 125I-ASOR.
Keywords:asialoglycoproteins  endocytosis  ligand dissociation  sucrose  protein degeneration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号