首页 | 本学科首页   官方微博 | 高级检索  
     


Life history of the symbiotically luminous cardinalfish Siphamia tubifer (Perciformes: Apogonidae)
Authors:A. L. Gould  S. T. Koenigbauer  P. V. Dunlap
Affiliation:Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, U.S.A.
Abstract:Characteristics of the life history of the coral reef‐dwelling cardinalfish Siphamia tubifer, from Okinawa, Japan, were defined. A paternal mouthbrooder, S. tubifer, is unusual in forming a bioluminescent symbiosis with Photobacterium mandapamensis. The examined S. tubifer (n = 1273) ranged in size from 9·5 to 43·5 mm standard length (LS), and the minimum size at sexual maturity was 22 mm LS. The number of S. tubifer associated during the day among the spines of host urchins was 22·9 ± 16·1 (mean ± s.d .; Diadema setosum) and 3·6 ± 3·2 (Echinothrix calamaris). Diet consisted primarily of crustacean zooplankton. Batch fecundity (number of eggs; FB) was related to LS by the equations: males (fertilized eggs) FB = 27·5LS ? 189·46; females (eggs) FB = 31·3LS ? 392·63. Individual mass (M; g) as a function of LS was described by the equation: urn:x-wiley:00221112:media:jfb13063:jfb13063-math-0001. Growth, determined from otolith microstructure analysis, was described with the von Bertalanffy growth function with the following coefficients: L = 40·8 mm LS, K = 0·026 day?1 and t0 = 23·25 days. Planktonic larval duration was estimated to be 30 days. The age of the oldest examined individual was 240 days. The light organ of S. tubifer, which harbours the symbiotic population of P. mandapamensis, increased linearly in diameter as S. tubifer LS increased, and the bacterial population increased logarithmically with S. tubifer LS. These characteristics indicate that once settled, S. tubifer grows quickly, reproduces early and typically survives much less than 1 year in Okinawa. These characteristics are generally similar to other small reef fishes but they indicate that S. tubifer experiences higher mortality.
Keywords:apogonids  bioluminescence  diet  growth  reproduction  symbiosis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号