首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A protein kinase G-sensitive channel mediates flow-induced Ca(2+) entry into vascular endothelial cells.
Authors:X Yao  H Y Kwan  F L Chan  N W Chan  Y Huang
Institution:Department of Physiology, Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong. yao2068@cuhk.edu.hk
Abstract:The hemodynamic force generated by blood flow is considered to be the physiologically most important stimulus for the release of nitric oxide (NO) and prostacyclin (PGI(2)) from vascular endothelial cells (1). NO and PGI(2) then act on the underlying smooth muscle cells, causing vasodilation and thus lowering blood pressure (2, 3). One critical early event occurring in this flow-induced regulation of vascular tone is that blood flow induces Ca(2+) entry into vascular endothelial cells, which in turn leads to the formation of NO (4, 5). Here we report a mechanosensitive Ca(2+)-permeable channel in vascular endothelial cells. The activity of the channel was inhibited by 8-Br-cGMP, a membrane-permeant activator of protein kinase G (PKG), in cell-attached membrane patches. The inhibition could be reversed by PKG inhibitor KT5823 or H-8. A direct application of active PKG in inside-out patches blocked the channel activity. Gd(3+), Ni(2+), or SK&F-96365 also inhibited the channel activity. A study of fluorescent Ca(2+) entry revealed a striking pharmacological similarity between the Ca(2+) entry elicited by flow and the mechanosensitive Ca(2+)-permeable channel we identified, suggesting that this channel is the primary pathway mediating flow-induced Ca(2+) entry into vascular endothelial cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号