首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The translational regulation of lipoprotein lipase by epinephrine involves an RNA binding complex including the catalytic subunit of protein kinase A
Authors:Ranganathan Gouri  Phan Dan  Pokrovskaya Irina D  McEwen Joan E  Li Chunling  Kern Philip A
Institution:Central Arkansas Veterans HealthCare System, and Department of Medicine, Division of Endocrinology, and the Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
Abstract:The balance of lipid flux in adipocytes is controlled by the opposing actions of lipolysis and lipogenesis, which are controlled primarily by hormone-sensitive lipase and lipoprotein lipase (LPL), respectively. Catecholamines stimulate adipocyte lipolysis through reversible phosphorylation of hormone-sensitive lipase, and simultaneously inhibit LPL activity. However, LPL regulation is complex and previous studies have described translational regulation of LPL in response to catecholamines because of an RNA-binding protein that interacts with the 3'-untranslated region of LPL mRNA. In this study, we identified several protein components of an LPL RNA binding complex. Using an LPL RNA affinity column, we identified two of the RNA-binding proteins as the catalytic (C) subunit of cAMP-dependent protein kinase (PKA), and A kinase anchoring protein (AKAP) 121/149, one of the PKA anchoring proteins, which has known RNA binding activity. To determine whether the C subunit was involved in LPL translation inhibition, the C subunit was depleted from the cytoplasmic extract of epinephrine-stimulated adipocytes by immunoprecipitation. This resulted in the loss of LPL translation inhibition activity of the extract, along with decreased RNA binding activity in a gel shift assay. To demonstrate the importance of the AKAPs, inhibition of PKA-AKAP binding with a peptide competitor (HT31) prevented epinephrine-mediated inhibition of LPL translation. C subunit kinase activity was necessary for LPL RNA binding and translation inhibition, suggesting that the phosphorylation of AKAP121/149 or other proteins was an important part of RNA binding complex formation. The hormonal activation of PKA results in the reversible phosphorylation of hormone-sensitive lipase, which is the primary mediator of adipocyte lipolysis. These studies demonstrate a dual role for PKA to simultaneously inhibit LPL-mediated lipogenesis through inhibition of LPL translation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号