首页 | 本学科首页   官方微博 | 高级检索  
   检索      

异源表达多巴脱羧酶促进大肠杆菌从头合成多巴胺
引用本文:宋富强,陈五九,吴凤礼,王晓霜,路福平,王钦宏.异源表达多巴脱羧酶促进大肠杆菌从头合成多巴胺[J].生物工程学报,2021,37(12):4266-4276.
作者姓名:宋富强  陈五九  吴凤礼  王晓霜  路福平  王钦宏
作者单位:1 天津科技大学 工业发酵微生物教育部重点实验室,天津 300457;2 中国科学院天津工业生物技术研究所 中国科学院系统微生物工程重点实验室,天津 300308;3 天津科技大学 生物工程学院,天津 300457;1 天津科技大学 工业发酵微生物教育部重点实验室,天津 300457;3 天津科技大学 生物工程学院,天津 300457
基金项目:国家重点研发计划 (No. 2018YFA0901402),中国科学院科研装备项目 (No. YJKYYQ20170023) 资助。
摘    要:多巴胺是多种天然抗氧化药物生物合成的前体物质,在人体内作为神经递质调控中枢神经系统的多种生理功能,常用于多种类型休克的临床治疗。目前,通过微生物合成技术已经实现了多巴胺的从头合成,但是合成效率很低。针对该问题,在左旋多巴 (l-DOPA) 大肠杆菌工程菌基础上,利用不同拷贝数质粒表达野猪Sus scrofa来源的多巴脱羧酶基因Ssddc,实现了葡萄糖到多巴胺的生产。为了进一步提高多巴胺合成效率,从100个候选基因中筛选出5个多巴脱羧酶基因进行测试,其中来源于人Homo sapiens多巴脱羧酶基因Hsddc的工程菌摇瓶发酵的多巴胺产量最高,达到3.33 g/L;而来源于果蝇Drosophila melanogaster多巴脱羧酶基因Dmddc的工程菌摇瓶发酵的左旋多巴残余量最低,仅有0.02 g/L;这两株工程菌分批补料发酵表明,多巴胺的产量可以分别达到13.3 g/L和16.2 g/L,左旋多巴残余量分别是0.45 g/L和0.23 g/L。将多巴脱羧酶基因Dmddc和Ssddc分别整合到基因组上,获得遗传稳定的工程菌,在分批补料发酵条件下,多巴胺产量最高达到17.7 g/L,是目前国内外报道的最高产量。

关 键 词:大肠杆菌,代谢工程,l-左旋多巴,多巴胺,多巴脱羧酶
收稿时间:2021/1/5 0:00:00

Heterogeneous expression of DOPA decarboxylase to improve the production of dopamine in Escherichia coli
Fuqiang Song,Wujiu Chen,Fengli Wu,Xiaoshuang Wang,Fuping Lu,Qinhong Wang.Heterogeneous expression of DOPA decarboxylase to improve the production of dopamine in Escherichia coli[J].Chinese Journal of Biotechnology,2021,37(12):4266-4276.
Authors:Fuqiang Song  Wujiu Chen  Fengli Wu  Xiaoshuang Wang  Fuping Lu  Qinhong Wang
Institution:1 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China;2 CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin 300308, China;3 College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China;1 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China;3 College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
Abstract:Dopamine is the precursor of a variety of natural antioxidant compounds. In the body, dopamine acts as a neurotransmitter that regulates a variety of physiological functions of the central nervous system. Thus, dopamine is used for the clinical treatment of various types of shock. Dopamine could be produced by engineered microbes, but with low efficiency. In this study, DOPA decarboxylase gene from Sus scrofa (Ssddc) was cloned into plasmids with different copy numbers, and transformed into a previously developed l-DOPA producing strain Escherichia coli T004. The resulted strain was capable of producing dopamine from glucose directly. To further improve the production of dopamine, a sequence-based homology alignment mining (SHAM) strategy was applied to screen more efficient DOPA decarboxylases, and five DOPA decarboxylase genes were selected from 100 candidates. In shake-flask fermentation, the DOPA decarboxylase gene from Homo sapiens (Hsddc) showed the highest dopamine production (3.33 g/L), while the DOPA decarboxylase gene from Drosophila Melanogaster (Dmddc) showed the least residual l-DOPA concentration (0.02 g/L). In 5 L fed-batch fermentations, production of dopamine by the two engineered strains reached 13.3 g/L and 16.2 g/L, respectively. The residual concentrations of l-DOPA were 0.45 g/L and 0.23 g/L, respectively. Finally, the Ssddc and Dmddc genes were integrated into the genome of E. coli T004 to obtain genetically stable dopamine-producing strains. In 5 L fed-batch fermentation, 17.7 g/L of dopamine was produced, which records the highest titer reported to date.
Keywords:Escherichia coli  metabolic engineering  l-DOPA  dopamine  DOPA decarboxylase
点击此处可从《生物工程学报》浏览原始摘要信息
点击此处可从《生物工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号