首页 | 本学科首页   官方微博 | 高级检索  
     


Simplified neuron model as a principal component analyzer
Authors:Erkki Oja
Affiliation:(1) Institute of Mathematics, University of Kuopio, 70100 Kuopio 10, Finland
Abstract:A simple linear neuron model with constrained Hebbian-type synaptic modification is analyzed and a new class of unconstrained learning rules is derived. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence.
Keywords:Neuron models  Synaptic plasticity  Stochastic approximation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号