首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Diabetes-related changes in cAMP response element-binding protein content enhance smooth muscle cell proliferation and migration
Authors:Watson P A  Nesterova A  Burant C F  Klemm D J  Reusch J E
Institution:Denver Research Institute, Denver Veterans Administration Medical Center, Denver, Colorado 80220, USA.
Abstract:We hypothesized that diabetes and glucose-induced reactive oxygen species lead to depletion of cAMP response element-binding protein (CREB) content in the vasculature. In primary cultures of smooth muscle cells (SMC) high medium glucose decreased CREB function but increased SMC chemokinesis and entry into the cell cycle. These effects were blocked by pretreatment with the antioxidants. High glucose increased intracellular reactive oxygen species detected by CM-H(2)DCFA. SMC exposed to oxidative stress (H(2)O(2)) demonstrated a 3.5-fold increase in chemokinesis (p < 0.05) and accelerated entry into cell cycle, accompanied by a significant decrease in CREB content. Chronic oxidative challenge similar to the microenvironment in diabetes (glucose oxidase treatment) decreases CREB content (40-50%). Adenoviral-mediated expression of constitutively active CREB abolished the increase in chemokinesis and cell cycle progression induced by either high glucose or oxidative stress. Analysis of vessels from insulin resistant or diabetic animals indicates that CREB content is decreased in the vascular stroma. Treatment of insulin-resistant animals with the insulin sensitizer rosiglitazone restores vessel wall CREB content toward that observed in normal animals. In summary, high glucose and oxidative stress decrease SMC CREB content increase chemokinesis and entry into the cell cycle, which is blocked by antioxidants or restoration of CREB content. Thus, decreased vascular CREB content could be one of the molecular mechanisms leading to increased atherosclerosis in diabetes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号