首页 | 本学科首页   官方微博 | 高级检索  
     


Macromolecular assemblies of myosin.
Authors:E Reisler   P Cheung     N Borochov
Abstract:The self-assembly of myosin into filamentous structures is a highly cooperative and rapid process. Nevertheless, the presence of nonequivalent bonding interactions within the filament permits differential stabilization of several macromolecular assemblies of myosin under well-controlled ionic conditions in citrate/Tris buffer at pH 8.0. We have detected and characterized bipolar myosin minifilaments, myosin octamers, and tetramers by using light scattering, analytical ultracentrifugation, and viscosity techniques. These structures have molecular weights of 8.0 X 10(6), 3.9 X 10(6) g/mol, sedimentation coefficients of 32S, 22S, and 18S, and radii of gyration of 990 A, 890 A and 790, A, respectively. The similar radii of gyration indicate similar bipolar geometry for all these particles. The 32S minifilaments in 10 mM citrate/Tris buffer (pH 8.0) are the most stable species. The smaller 18S and 22S assemblies in 2 mM and 5 mM citrate/Tris, pH 8.0, are readily affected by low concentrations of KCl and fuse into the minifilament particles. The instability of the 18S and 22S forms of myosin assembly is also revealed by their titration with ATP. These structures are dissociated at lower ATP concentrations than the minifilaments and do not show the cooperative dissociation transitions characteristic of filaments and minifilaments. Sedimentation velocity analysis of the 18S and 22S species in the presence of ATP reveals the involvement of 10S myosin dimer in the dissociation of assembled myosin. The different forms of assembled myosin are discussed in the context of formation of myosin minifilaments.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号