首页 | 本学科首页   官方微博 | 高级检索  
     


The contribution of the pleural type 12 interneuron to swim acceleration in Clione limacina
Authors:Thomas J. Pirtle  Richard A. Satterlie
Affiliation:(1) Department of Biology, Abilene Christian University, ACU Box 27868, Abilene, TX 79699, USA;(2) Department of Biology, University of North Carolina at Wilmington, Wilmington, NC 28409, USA;(3) Friday Harbor Laboratories, Friday Harbor, WA 98250, USA
Abstract:The pteropod mollusc, Clione limacina, swims by alternate dorsal–ventral flapping movements of its wing-like parapodia. The basic swim rhythm is produced by a network of pedal swim interneurons that comprise a swim central pattern generator (CPG). Serotonergic modulation of both intrinsic cellular properties of the swim interneurons and network properties contribute to swim acceleration, the latter including recruitment of type 12 interneurons into the CPG. Here we address the role of the type 12 interneurons in swim acceleration. A single type 12 interneuron is found in each of the pleural ganglia, which contributes to fast swimming by exciting the dorsal swim interneurons while simultaneously inhibiting the ventral swim interneurons. Each type 12 interneuron sends a single process through the pleural–pedal connective that branches in both ipsilateral and contralateral pedal ganglia. This anatomical arrangement allowed us to manipulate the influence of the type 12 interneurons on the swim circuitry by cutting the pleural–pedal connective followed by a “culture” period of 48 h. The mean swim frequency of cut preparations was reduced by 19% when compared to the swim frequency of uncut preparations when stimulated with 10−6 M serotonin; however, this decrease was not statistically significant. Additional evidence suggests that the type 12 interneurons may produce a short-term, immediate effect on swim acceleration while slower, modulatory inputs are taking shape.
Keywords:Clione   Swim acceleration  Plateau potential  Central pattern generator
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号