首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Immiscible organic solvent inactivation of urease, chymotrypsin, lipase, and ribonuclease: separation of dissolved solvent and interfacial effects
Authors:Ghatorae A S  Guerra M J  Bell G  Halling P J
Institution:Departments of Bioscience & Biotechnology and Chemical & Process Engineering, University of Strathclyde, Glasgow G1 1XW, United Kingdom.
Abstract:A new technique with controlled interface generation allows separation and quantitation of enzyme inactivation by both solvent/aqueous interface and dissolved solvent. This has now been used in n-butanol, isopropylether, 2-octanone, n-hexane, n-butylbenzene, and n-tridecane. Ribonuclease was stable with all the solvent/aqueous interfaces studied. Chymotrypsin was mainly inactivated by the more hydrophobic solvent/aqueous interfaces, whereas lipase was only inactivated by the less hydrophobic solvent/aqueous interfaces. Urease was inactivated by some interfaces, but not all, without an obvious trend. Thus, the commonly expected simple relationship with solvent polarity (e.g., log P) does not apply when interfacial inactivation is determined specifically. Greater dissolved solvent inactivation occurred with the more polar solvents, though only a general trend was apparent with log P. A better correlation was noted with the Hilde-brand solubility parameter. Interfacial effects are discussed with reference to enzyme molecular weight, denaturation temperature, hydrophobicity, and adiabatic compressibility. (c) 1994 John Wiley & Sons, Inc.
Keywords:enzyme inactivation  immiscible organic solvents  interfacial area
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号