Abstract: | Thyroglobulin molecules were studied in the electron microscope with negative staining technique. In a first series of experiments samples of thyroglobulin varying in iodine content from 0.5 to 0.03% were prepared from the thyroids of mice and rats kept on iodine-poor diets. All samples contained thyroglobulin molecules of the normal ovoid shape, not deviating in size or shape from molecules obtained from normal thyroids. However, in addition, another type of molecule having a cylindrical shape was observed in all samples. The proportion of these cylindrical molecules increased from a few per cent in the moderately iodine-poor thyroglobulin samples to more than 80% in the highly iodine-deficient thyroglobulin (0.03%). In a second series of experiments extremely iodine-poor thyroglobulin (smaller than 0.005%) was obtained from propylthiouracil-treated rats. In these preparations practically all molecules had a cylindrical shape. These samples also contained smaller particles interpreted to be dissociation products. The cylindrical molecules were of two types, one appearing compact and measuring 250 times 135 A (length times diameter) and the other appearing porous and having a length of 145 and a diameter of 205 A. It is concluded that the cylindrical molecules represent non- or low-iodinated thyroglobulin and it is suggested that the porous cylindrical molecule is an unfolded form of the compact cylinder. |