首页 | 本学科首页   官方微博 | 高级检索  
     


Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser
Authors:Michael W. Berns   James R. Aist   William H. Wright  Hong Liang
Affiliation:Beckman Laser Institute and Medical Clinic, University of California, Irvine 92715.
Abstract:We have compared two different laser-induced optical light traps for their utility in moving organelles within living animal cells and walled fungal cells. The first trap employed a continuous wave neodymium-yttrium aluminum garnet (Nd-YAG) laser at a wavelength of 1.06 micron. A second trap was constructed using a titanium-sapphire laser tunable from 700 to 1000 nm. With the latter trap we were able to achieve much stronger traps with less laser power and without damage to either mitochondria or spindles. Chromosomes and nuclei were easily displaced, nucleoli were separated and moved far away from interphase nuclei, and Woronin bodies were removed from septa. In comparison, these manipulations were not possible with the Nd-YAG laser-induced trap. The optical force trap induced by the tunable titanium-sapphire laser should find wide application in experimental cell biology because the wavelength can be selected for maximization of force production and minimization of energy absorption which leads to unwanted cell damage.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号