首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Trp-676 facilitates nicotinamide coenzyme exchange in the reductive half-reaction of human cytochrome P450 reductase: properties of the soluble W676H and W676A mutant reductases
Authors:Gutierrez A  Doehr O  Paine M  Wolf C R  Scrutton N S  Roberts G C
Institution:Biological NMR Centre, University of Leicester, Medical Sciences Building, PO Box 138, University Road, Leicester LE1 9HN, UK.
Abstract:The kinetics of flavin reduction in two mutant forms of human cytochrome P450 reductase have been studied by stopped-flow spectroscopy with absorption and fluorescence detection. The mutant enzymes were altered at the position of Trp-676, which, by analogy with the structure of rat CPR, is close to the isoalloxazine ring of the enzyme-bound FAD. We show that mutant CPRs in which Trp-676 has been changed to histidine (W676H) and alanine (W676A) can be reduced by NADPH only to the two-electron level in single mixing stopped-flow experiments. The concentration dependence of the rate of hydride transfer indicates that the second, noncatalytic NADPH-binding site present in wild-type CPR is retained in the mutant enzymes. Detailed studies of W676H CPR indicate that further reduction of the enzyme beyond the two electron level is prevented due to the slow release of NADP(+) from the active site following the first hydride transfer from NADPH, owing to the stability of a reduced enzyme-NADP(+) charge-transfer complex. Reduction to the four-electron level is achieved in a sequential mixing stopped-flow experiment. In this procedure, W676H CPR is reacted first with a stoichiometric amount of NADPH, and then, following a delay of 100 ms, with excess NADPH. The data indicate that occupancy of the noncatalytic coenzyme site also hinders NADP(+) release from reduced enzyme. Fluorescence stopped-flow studies of the W676H and wild-type CPR enzymes reveal that the complex signals associated with reduction of wild-type CPR by NADPH are attributable to changes in the environment of residue W676. From these studies, a model is proposed for nicotinamide binding in wild-type CPR. In this model W676 serves as a trigger to release NADP(+) from the active site following hydride transfer. In the W676H enzyme, the slow release of NADP(+) is a consequence of the combined effects of (i) removing W676 by mutagenesis (thus removing the trigger for displacement) and (ii) the binding of NADPH in the noncatalytic site, thus trapping NADP(+) in the catalytic site.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号