Confocal imaging of in situ natural microbial communities and their extracellular polymeric secretions using Nanoplast resin |
| |
Authors: | Decho A W Kawaguchi T |
| |
Affiliation: | Department of Environmental Health Sciences School of Public Health, University of South Carolina, Columbia 29208, USA. adecho@sph.sc.edu |
| |
Abstract: | A novel method using excision and fixation in Nanoplast, a hydrophilic embedding resin, allows confocal imaging of natural microbial communities and their extracellular polymeric secretions (EPS) while in situ. Prestaining with fluorescent probes permits the observation of specific cellular and extracellular components. Marine stromatolite sediments were examined using this method. Optical sectioning using confocal laser scanning microscopy (CLSM) permitted high-resolution imaging through sediments. Delicate arrangements of the EPS that are associated with sedimentary microbial biofilms were imaged using a fluorescein isothiocyanate (FITC)-labeled lectin (concanavalin-A) probe. Close microspatial associations of heterotrophic bacteria cells and autotrophic cyanobacteria cells were also observed. The nanoplast resin produces no detectable autofluorescence. Further coupling of multi-photon scanning laser microscopy (2P-LSM) with a conventional single photon CLSM allowed concurrent imaging of DAPI-labeled microbial cells, FITC-labeled EPS and autofluorescent carbonate sand grains. The multi-photon infrared laser permits deep (approximately 1 mm) penetration of samples and the excitation of DAPI, which normally requires UV-excitation with minimal disturbance to samples. The unique combination of Nanoplast with fluorescent probes, CLSM and 2P-LSM allows for the preservation and imaging of natural microbial communities in their in situ state, a method easily adapted for examinations of other microbial systems. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|