首页 | 本学科首页   官方微博 | 高级检索  
     


Possible Hydrophobic Region in Myelin Basic Protein Consisting of an Orthogonally Packed β-Sheet
Authors:Russell E. Martenson
Affiliation:Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, Maryland, U.S.A.
Abstract:Theoretical analysis was carried out to determine how the approximately 20% of beta-structure observed in the 18.5 kilodalton (kDa) myelin basic protein (MBP) could be organized into a relatively stable beta-sheet. The beta-sheet is presumed to consist of the five most hydrophobic segments of polypeptide chain, which have beta-structure potential. These correspond approximately to sequences 15-21, 37-45, 84-92, 106-112, and 148-154 (rabbit MBP sequence numbering) and constitute beta-strands a, b, c, d, and e, respectively. A number of constraints are imposed upon the sheet; e.g., it should have the same topology in all MBP forms (21.5, 18.5, 17, and 14 kDa); strand e should lie at the sheet edge; strands b, c, and d should be ordered sequentially; the sheet formed by strands a, b, c, and d should be antiparallel; a maximum of the nonpolar surface area should be removed from the aqueous milieu; and charged side chains should be solvent-accessible. On the basis of these constraints it is possible to propose six orthogonally packed beta-sheets having different topologies. If strand e is restricted to an antiparallel alignment, the number of different sheets is reduced to four. Each of these sheets can form a relatively compact hydrophobic globular region. Two of the strands (a and e) can undergo transitions to alpha-helix without disrupting the structure of the remaining sheet bcd or producing major topologic rearrangements of the polypeptide chain.
Keywords:Myelin basic protein    Protein structure prediction    β-Sheet formation    Hydrophobic interactions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号