Abstract: | Treatment of H4 hepatoma cells with the lectin wheat germ agglutinin (WGA) in the concentration range of 10-25 micrograms/ml increased 125I-insulin binding fivefold as compared to control binding in untreated cells. The increased insulin binding was rapid, readily reversible, and correlated with a 10-fold increase in the binding affinity of the receptor for insulin. Kinetic studies indicate that this increased affinity resulted from a decrease in the dissociation rate. The effect was specifically mediated by the lectin since it was reversed by simultaneous incubation with the monosaccharide N-acetyl-D-glucosamine (50 mM) or the disaccharide N,N'-diacetylchitobiose (1 mM). The WGA-mediated increase in insulin binding was not caused by inhibited insulin degradation. While WGA (5 micrograms/ml) mimicked insulin to induce stimulated uptake of [3H]aminoisobutyrate, the lectin failed to enhance the biological sensitivity of H4 hepatoma cells to insulin. At higher concentrations of WGA (125 micrograms/ml), interference with the insulin-mediated response was observed. Trypsin treatment of H4 hepatoma cells prior to measuring binding of 125I-insulin in the presence of increasing concentrations of native insulin, led to a leftward shift of the competition curve, indicating an increased affinity of the receptor. No further increase was observed when the trypsin-treated cells were subsequently exposed to WGA. These results suggest that trypsin treatment and WGA exposure may increase the affinity of the receptor by a similar mechanism. The results are consistent with the concept that WGA and trypsin decrease interaction between insulin binding and receptor affinity regulating components in the plasma membrane, leading to an increase in the affinity of the receptor for insulin. |