首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A mutant gene that increases gibberellin production in brassica
Authors:Rood S B  Williams P H  Pearce D  Murofushi N  Mander L N  Pharis R P
Institution:Department of Biological Sciences, University of Lethbridge, Alberta, T1K 3M4, Canada.
Abstract:A single gene mutant (elongated internode ein/ein]) with accelerated shoot elongation was identified from a rapid cycling line of Brassica rapa. Relative to normal plants, mutant plants had slightly accelerated floral development, greater stem dry weights, and particularly, increased internode and inflorescence elongation. The application of the triazole plant growth retardant, paclobutrazol, inhibited shoot elongation, returning ein to a more normal phenotype. Conversely, exogenous gibberellin A3 (GA3) can convert normal genotypes to a phenotype resembling ein. The content of endogenous GA1 and GA3 were estimated by gas chromatography-selected ion monitoring using 2H]GA1, as a quantitative internal standard and at day 14 were 1.5- and 12.1-fold higher per stem, respectively, in ein than in normal plants, although GA concentrations were more similar. The endogenous levels of GA20 and GA1, and the rate of GA19 metabolism were simultaneously analyzed at day 7 by feeding 2H2]GA19 and measuring metabolites 2H2]GA20 and 2H2]GA1 and endogenous GA20 and GA1, with 2H5]GA20 and 2H5]GA1 as quantitative internal standards. Levels of GA1 and GA20 were 4.6- and 12.9-fold higher, respectively, and conversions to GA20 and GA1 were 8.3 and 1.3 times faster in ein than normal plants. Confirming the enhanced rate of GA1 biosynthesis in ein, the conversion of 3H]GA20 to 3H]GA1 was also faster in ein than in the normal genotype. Thus, the ein allele results in accelerated GA1 biosynthesis and an elevated content of endogenous GAs, including the dihydroxylated GAs A1 and A3. The enhanced GA production probably underlies the accelerated shoot growth and development, and particularly, the increased shoot elongation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号