首页 | 本学科首页   官方微博 | 高级检索  
   检索      


NMR detection of slow conformational dynamics in an endonuclease toxin
Authors:Sara B-M Whittaker  Ruth Boetzel  Colin MacDonald  Lu-Yun Lian  Ansgar J Pommer  Ann Reilly  Richard James  Colin Kleanthous  Geoffrey R Moore
Institution:(1) School of Chemical Sciences, University of East Anglia, Norwich, NR4 7TJ, U.K;(2) Biological NMR Centre, Leicester University, P.O. Box 138, Maurice Shock Building, Leicester, LE1 8HN, U.K;(3) School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, U.K
Abstract:The cytotoxic activity of the secreted bacterial toxin colicin E9 is due to a non-specific DNase housed in the C-terminus of the protein. Double-resonance and triple-resonance NMR studies of the 134-amino acid15 N- and 13C/15N-labelled DNase domain are presented. Extensive conformational heterogeneity was evident from the presence of far more resonances than expected based on the amino acid sequence of the DNase, and from the appearance of chemical exchange cross-peaks in TOCSY and NOESY spectra. EXSY spectra were recorded to confirm that slow chemical exchange was occurring. Unambiguous sequence-specific resonance assignments are presented for one region of the protein, Pro65-Asn72, which exists in two slowly exchanging conformers based on the identification of chemical exchange cross-peaks in 3D 1H-1H-15N EXSY-HSQC, NOESY-HSQC and TOCSY-HSQC spectra, together with Cagr and Cbeta chemical shifts measured in triple-resonance spectra and sequential NH NOEs. The rates of conformational exchange for backbone amide resonances in this stretch of amino acids, and for the indole NH of either Trp22 or Trp58, were determined from the intensity variation of the appropriate diagonal and chemical exchange cross-peaks recorded in 3D1 H-1H-15N NOESY-HSQC spectra. The data fitted a model in which this region of the DNase has two conformers, NA and NB, which interchange at 15 °C with a forward rate constant of 1.61 ± 0.5 s-1 and a backward rate constant of 1.05 ± 0.5 s-1. Demonstration of this conformational equilibrium has led to a reappraisal of a previously proposed kinetic scheme describing the interaction of E9 DNase with immunity proteins Wallis et al. (1995) Biochemistry, 34, 13743–13750 and 13751–13759]. The revised scheme is consistent with the specific inhibitor protein for the E9 DNase, Im9, associating with both the NA and NB conformers of the DNase and with binding only to the NB conformer detected because the rate of dissociation of the complex of Im9 and the NA conformer, NAI, is extremely rapid. In this model stoichiometric amounts of Im9 convert, the E9 DNase is converted wholly into the NBI form. The possibility that cis–trans isomerisation of peptide bonds preceding proline residues is the cause of the conformational heterogeneity is discussed. E9 DNase contains 10 prolines, with two bracketing the stretch of amino acids that have allowed the NA lrhar NB interconversion to be identified, Pro65 and Pro73. The model assumes that one or both of these can exist in either the cis or trans form with strong Im9 binding possible to only one form.
Keywords:colicin  conformational dynamics  E9 DNase  EXSY
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号