首页 | 本学科首页   官方微博 | 高级检索  
     


Improved prediction of the number of residue contacts in proteins by recurrent neural networks
Authors:Pollastri G  Baldi P  Fariselli P  Casadio R
Affiliation:Department of Information and Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697-3425, USA.
Abstract:Knowing the number of residue contacts in a protein is crucial for deriving constraints useful in modeling protein folding, protein structure, and/or scoring remote homology searches. Here we use an ensemble of bi-directional recurrent neural network architectures and evolutionary information to improve the state-of-the-art in contact prediction using a large corpus of curated data. The ensemble is used to discriminate between two different states of residue contacts, characterized by a contact number higher or lower than the average value of the residue distribution. The ensemble achieves performances ranging from 70.1% to 73.1% depending on the radius adopted to discriminate contacts (6Ato 12A). These performances represent gains of 15% to 20% over the base line statistical predictors always assigning an aminoacid to the most numerous state, 3% to 7% better than any previous method. Combination of different radius predictors further improves the performance. SERVER: http://promoter.ics.uci.edu/BRNN-PRED/.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号