首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional association of type IIA secretory phospholipase A(2) with the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan in the cyclooxygenase-2-mediated delayed prostanoid-biosynthetic pathway.
Authors:M Murakami  T Kambe  S Shimbara  S Yamamoto  H Kuwata  I Kudo
Institution:Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan.
Abstract:An emerging body of evidence suggests that type IIA secretory phospholipase A(2) (sPLA(2)-IIA) participates in the amplification of the stimulus-induced cyclooxygenase (COX)-2-dependent delayed prostaglandin (PG)-biosynthetic response in several cell types. However, the biological importance of the ability of sPLA(2)-IIA to bind to heparan sulfate proteoglycan (HSPG) on cell surfaces has remained controversial. Here we show that glypican, a glycosylphosphatidylinositol (GPI)-anchored HSPG, acts as a physical and functional adaptor for sPLA(2)-IIA. sPLA(2)-IIA-dependent PGE(2) generation by interleukin-1-stimulated cells was markedly attenuated by treatment of the cells with heparin, heparinase or GPI-specific phospholipase C, which solubilized the cell surface-associated sPLA(2)-IIA. Overexpression of glypican-1 increased the association of sPLA(2)-IIA with the cell membrane, and glypican-1 was coimmunoprecipitated by the antibody against sPLA(2)-IIA. Glypican-1 overexpression led to marked augmentation of sPLA(2)-IIA-mediated arachidonic acid release, PGE(2) generation, and COX-2 induction in interleukin-1-stimulated cells, particularly when the sPLA(2)-IIA expression level was suboptimal. Immunofluorescent microscopic analyses of cytokine-stimulated cells revealed that sPLA(2)-IIA was present in the caveolae, a microdomain in which GPI-anchored proteins reside, and also appeared in the perinuclear area in proximity to COX-2. We therefore propose that a GPI-anchored HSPG glypican facilitates the trafficking of sPLA(2)-IIA into particular subcellular compartments, and arachidonic acid thus released from the compartments may link efficiently to the downstream COX-2-mediated PG biosynthesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号