首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nucleoside diphosphate kinase B knock-out mice have impaired activation of the K+ channel KCa3.1, resulting in defective T cell activation
Authors:Di Lie  Srivastava Shekhar  Zhdanova Olga  Sun Yi  Li Zhai  Skolnik Edward Y
Institution:Department of Internal Medicine, New York University Langone Medical Center, New York, New York 10016, USA.
Abstract:Nucleoside diphosphate kinases (NDPKs) are encoded by the Nme (non-metastatic cell) gene family. Although they comprise a family of 10 genes, NDPK-A and -B are ubiquitously expressed and account for most of the NDPK activity. We previously showed that NDPK-B activates the K(+) channel KCa3.1 via histidine phosphorylation of the C terminus of KCa3.1, which is required for T cell receptor-stimulated Ca(2+) flux and proliferation of activated naive human CD4 T cells. We now report the phenotype of NDPK-B(-/-) mice. NDPK-B(-/-) mice are phenotypically normal at birth with a normal life span. Although T and B cell development is normal in NDPK-B(-/-) mice, KCa3.1 channel activity and cytokine production are markedly defective in T helper 1 (Th1) and Th2 cells, whereas Th17 function is normal. These findings phenocopy studies in the same cells isolated from KCa3.1(-/-) mice and thereby support genetically that NDPK-B functions upstream of KCa3.1. NDPK-A and -B have been linked to an astonishing array of disparate cellular and biochemical functions, few of which have been confirmed in vivo in physiological relevant systems. NDPK-B(-/-) mice will be an essential tool with which to definitively address the biological functions of NDPK-B. Our finding that NDPK-B is required for activation of Th1 and Th2 CD4 T cells, together with the normal overall phenotype of NDPK-B(-/-) mice, suggests that specific pharmacological inhibitors of NDPK-B may provide new opportunities to treat Th1- and Th2-mediated autoimmune diseases.
Keywords:Cell Differentiation  Histidine Kinases  Lymphocyte  Potassium Channels  T Cell Receptor  Nucleoside Diphosphate Kinase B Knock-out  T Cell Signaling
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号