首页 | 本学科首页   官方微博 | 高级检索  
     


Prevention of GVHD by modulation of rat bone marrow with UV-B irradiation: II. Kinetics of migration of UV-B-irradiated bone marrow cells in naive and lethally irradiated rats
Authors:S F Oluwole  K Engelstad  M A Hardy
Affiliation:Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York 10032.
Abstract:UV-B irradiation (700 J/m2) of bone marrow (BM) cells prior to transplantation into lethally gamma-irradiated (1050 rad) allogeneic rats prevents the development of GVHD and results in a stable mixed lymphohematopoietic chimerism. To better understand the underlying mechanisms of the development of stable radiation chimeras in this model, this study was designed to examine whether the dose (700 J/m2) of UV-B irradiation used for the modulation of the BM inoculum would affect the homing pattern of radiolabeled BM cells compared to that of thoracic duct lymphocytes (TDL) in the naive and lethally irradiated recipients. The results showed that intravenously administered, 111Indium-oxine-labeled, unmodified TDL home specifically to the spleen, lymph nodes, and BM compartments with a subsequent recirculation of a large number of cells from the spleen to the lymph nodes. In contrast, radiolabeled, unmodified BM cells migrate specifically to the spleen, liver, and BM with the lymph nodes, thymus, and nonlymphoid organs containing very little amounts of radioactivity. The stable concentrations of radioactivity in the lymphoid and nonlymphoid compartments between 3 and 72 hr after injection suggest that BM cells, unlike TDL, do not recirculate. The migration pattern of BM cells in the naive recipient was not significantly different from that seen in lethally irradiated animals except for the higher concentration of radioactivity in the spleen and BM of irradiated animals compared to that seen in naive recipients. The similarity of tissue localization of BM cells in naive or in irradiated syngeneic recipients to that of allogeneic recipients suggests that the homing of BM cells is not MHC restricted. Our findings of similarity between tissue localization of UV-B-irradiated labeled BM cells and unmodified BM cells in naive and lethally irradiated recipients suggest that a dose of 700 J/m2 of UV-B irradiation is not capable of impairing BM cell migration although it is sufficient to abolish the homing of TDL to the HEV-bearing organs. Thus, our results show that BM cells are less susceptible to cell damage by UV-B irradiation than lymphocytes thereby providing the rationale for ex vivo modulation (rather than elimination) of mature T-lymphocytes in the donor BM inoculum with UV-B irradiation. This relatively simple and effective approach to modulation of T-cells in donor BM inoculum may be potentially useful in preventing GVHD without endangering successful engraftment in larger animals and in man.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号