首页 | 本学科首页   官方微博 | 高级检索  
     


Water stress impacts on respiratory rate, efficiency and substrates, in growing and mature foliage of Eucalyptus spp
Authors:Andrew N. Callister  Mark A. Adams
Affiliation:(1) School of Forest and Ecosystem Science, University of Melbourne, Waters St, Creswick, VIC, Australia;(2) Centre of Excellence in Natural Resource Management, University of Western Australia, 35 Stirling Hwy, Crawley, WA, Australia
Abstract:In previous studies, water stress has induced variable and sometimes contradictory changes in respiration. We used isothermal calorimetry to measure the response of foliar respiration to water deficit in nine eucalypt genotypes. Specific growth rates (R SG) of shoots and leaves of variable age were measured independently, and the data were applied to both the growth-maintenance and enthalpy balance models. We calculated the oxidation state of respiratory substrate and the enthalpy change for the conversion of substrate carbon to biomass (ΔH B). Moderate water stress reduced the R SG of shoots by 38% (P<0.01) and carbon conversion efficiency by 15% (P<0.05). The relationship between carbon conversion efficiency and R SG was not affected by water deficit for shoots, but was significantly altered for leaves. Water deficit increased maintenance respiration by about 23% (P<0.001). The growth coefficient of respiration was not significantly altered. However, changes in oxidation states of substrate and biomass suggest that the energy requirements of biosynthesis were increased under water stress. Our results confirm that carbohydrates are the major respiratory substrates in growing tissues, though mature leaves utilized a substantial component of more reduced substrate. Mature leaves had variable oxidation states for respiration substrate, which indicates a variable relationship between CO2 evolution and ATP production. Measured ΔH B in shoots and leaves were too small for reliable estimation of R SG by the enthalpy balance model. We also found significant effects of water stress on the oxidation state of substrate and ΔH B.
Keywords:Calorimetry  Eucalyptus  Oxidation state  Respiration  Substrate  Water stress
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号