首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Physiological properties and functions of Ca(2+) sparks in rat intrapulmonary arterial smooth muscle cells
Authors:Remillard Carmelle V  Zhang Wei-Min  Shimoda Larissa A  Sham James S K
Institution:Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21224, USA.
Abstract:Ca(+) spark has been implicated as a pivotal feedback mechanism for regulating membrane potential and vasomotor tone in systemic arterial smooth muscle cells (SASMCs), but little is known about its properties in pulmonary arterial smooth muscle cells (PASMCs). Using confocal microscopy, we identified spontaneous Ca(2+) sparks in rat intralobar PASMCs and characterized their spatiotemporal properties and physiological functions. Ca(2+) sparks of PASMCs had a lower frequency and smaller amplitude than cardiac sparks. They were abolished by inhibition of ryanodine receptors but not by inhibition of inositol trisphosphate receptors and L-type Ca(2+) channels. Enhanced Ca(2+) influx by BAY K8644, K(+), or high Ca(2+) caused a significant increase in spark frequency. Functionally, enhancing Ca(2+) sparks with caffeine (0.5 mM) caused membrane depolarization in PASMCs, in contrast to hyperpolarization in SASMCs. Norepinephrine and endothelin-1 both caused global elevations in cytosolic Ca(2+) concentration (Ca(2+)]), but only endothelin-1 increased spark frequency. These results suggest that Ca(2+) sparks of PASMCs are similar to those of SASMCs, originate from ryanodine receptors, and are enhanced by Ca(2+) influx. However, they play a different modulatory role on membrane potential and are under agonist-specific regulation independent of global Ca(2+)].
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号