首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Arabidopsis Actin-Depolymerizing Factor AtADF4 Mediates Defense Signal Transduction Triggered by the Pseudomonas syringae Effector AvrPphB
Authors:Miaoying Tian  Faisal Chaudhry  Daniel R Ruzicka  Richard B Meagher  Christopher J Staiger  Brad Day
Institution:Department of Plant Pathology, Michigan State University, East Lansing, Michigan 48824–1311 (M.T., B.D.); Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907–2064 (F.C., C.J.S.); and Department of Genetics, University of Georgia, Athens, Georgia 30602–7223 (D.R.R., R.B.M.)
Abstract:The actin cytoskeleton has been implicated in plant defenses against pathogenic fungi and oomycetes with limited, indirect evidence. To date, there are no reports linking actin with resistance against phytopathogenic bacteria. The dynamic behavior of actin filaments is regulated by a diverse array of actin-binding proteins, among which is the Actin-Depolymerizing Factor (ADF) family of proteins. Here, we demonstrate that actin dynamics play a role in the activation of gene-for-gene resistance in Arabidopsis (Arabidopsis thaliana) following inoculation with the phytopathogenic bacterium Pseudomonas syringae pv tomato. Using a reverse genetics approach, we explored the roles of Arabidopsis ADFs in plant defenses. AtADF4 was identified as being specifically required for resistance triggered by the effector AvrPphB but not AvrRpt2 or AvrB. Recombinant AtADF4 bound to monomeric actin (G-actin) with a marked preference for the ADP-loaded form and inhibited the rate of nucleotide exchange on G-actin, indicating that AtADF4 is a bona fide actin-depolymerizing factor. Exogenous application of the actin-disrupting agent cytochalasin D partially rescued the Atadf4 mutant in the AvrPphB-mediated hypersensitive response, demonstrating that AtADF4 mediates defense signaling through modification of the actin cytoskeleton. Unlike the mechanism by which the actin cytoskeleton confers resistance against fungi and oomycetes, AtADF4 is not involved in resistance against pathogen entry. Collectively, this study identifies AtADF4 as a novel component of the plant defense signaling pathway and provides strong evidence for actin dynamics as a primary component that orchestrates plant defenses against P. syringae.The actin cytoskeleton has been implicated in plant defenses against pathogenic fungi and oomycetes (Hardham et al., 2007). Evidence largely comes from studies using actin cytoskeleton-disrupting agents, such as cytochalasins. Treatments with a variety of cytochalasins were shown to increase the penetration rate of both adapted and nonadapted pathogens in multiple plant-pathogen systems, thereby implicating the actin cytoskeleton as having a role in basal defenses and nonhost resistance (Kobayashi et al., 1997; Yun et al., 2003; Shimada et al., 2006; Miklis et al., 2007). The actin cytoskeleton may also play a role in race-specific resistance (Skalamera and Heath, 1998). To date, no reports linking actin dynamics with resistance against phytopathogenic bacteria have been published.While the actin cytoskeleton as a virulence target of plant pathogens has not been documented, it was well characterized in mammalian pathosystems, particularly in studies investigating macrophage interactions with the pathogenic bacterium Yersinia pestis (Mattoo et al., 2007). Yersinia species deliver a suite of effectors into the target host cell, and at least four of them (YopE, YpkA/YopO, YopT, and YopH) are involved in rearrangement of the actin cytoskeleton (Aepfelbacher and Heesemann, 2001). YopT, a Cys protease, targets a plasma membrane-localized Rho GTPase in affected phagocytes (Aepfelbacher and Heesemann, 2001). Cleavage of the GTPase by YopT releases the prenylated protein from the plasma membrane and disrupts the actin cytoskeleton, effectively shutting down phagocytosis, preventing elimination of the pathogen (Iriarte and Cornelis, 1998; Shao et al., 2002). Similarly, microbial pathogens also usurp host processes for the benefit of infection, disease, and death. Listeria species hijack the host''s cytoskeleton to move around inside the infected cell through the induction of directed polymerization of actin (Pistor et al., 1994). Salmonella injects into host cells two actin-binding proteins (SipA and SipC) as well as other regulators of actin dynamics to enhance phagocytic uptake and intracellular propagation (Galan and Zhou, 2000). In short, either by preventing polymerization or by promoting it, pathogens have evolved strategies to modify the host actin cytoskeleton for purposes of evading detection or eliciting disease and death.Dynamic actin cytoskeleton rearrangements are regulated by a pool of actin-binding proteins, which sense environmental changes and modulate the cytoskeleton through various biochemical activities (Hussey et al., 2006; Staiger and Blanchoin, 2006). Among the proteins that regulate these dynamic processes are the Actin-Depolymerizing Factor (ADF) family of proteins (Maciver and Hussey, 2002). In general, ADFs bind both monomeric (G-) and filamentous (F-) actin to increase actin dynamics. They function by severing F-actin to generate more ends for polymerization and by increasing the dissociation rate of actin monomers from the pointed ends (Maciver, 1998; Maciver and Hussey, 2002). Plant ADFs play roles in pollen tube growth (Chen et al., 2003), root formation (Thomas and Schiefelbein, 2002), and cold acclimation (Ouellet et al., 2001). There is also one report linking ADFs with plant defenses (Miklis et al., 2007). In that study, ectopic expression of barley (Hordeum vulgare) HvADF3 and several isovariants of Arabidopsis (Arabidopsis thaliana) ADFs in barley epidermal cells was shown to compromise penetration resistance to powdery mildew fungi (Miklis et al., 2007).The Arabidopsis-Pseudomonas syringae interaction provides an ideal model plant-pathogen system to study plant defense signaling. Like Yersinia species, P. syringae delivers effector proteins into the host cells via the type III secretion system and relies on these proteins for pathogenesis (Alfano and Collmer, 2004). However, once these proteins (Avr) are recognized either directly or indirectly by plant resistance (R) proteins, plant immune responses are activated (Jones and Dangl, 2006). Exciting progress has been made toward understanding the indirect recognition of several pairs of Avr-R proteins; the best examples include AvrB/AvrRPM1-RPM1, AvrRpt2-RPS2, and AvrPphB-RPS5. During activation of defense mediated by AvrB/AvrRPM1-RPM1 and AvrRpt2-RPS2, the phosphorylation or elimination of a third protein, RIN4, is essential (Mackey et al., 2002; Axtell and Staskawicz, 2003). In the case of AvrPphB-RPS5 recognition, the AvrPphB Cys protease of the same family as YopT (Shao et al., 2002) cleaves the plant protein kinase PBS1, inducing a conformational change in RPS5, which in turn leads to the activation of resistance (Ade et al., 2007). Although these studies have greatly enhanced our understanding of how pathogen effectors initiate plant defense responses, the ultimate signaling processes associated with the activation of resistance remain largely unknown, due to the limited number of genetic loci identified in these pathways. In this work, we hypothesize that actin-binding proteins play a role during plant-bacteria interactions based on the functional and structural similarity between AvrPphB and YopT.There are 11 ADFs in the Arabidopsis genome (Ruzicka et al., 2007). We utilized a reverse genetics approach to identify the putative roles these proteins play in plant resistance against the bacterial pathogen P. syringae pv tomato (Pst). AtADF4 was identified as a novel signaling component in the AvrPphB-RPS5-mediated defense signal transduction pathway. Loss of AtADF4 confers on Arabidopsis enhanced susceptibility to P. syringae expressing AvrPphB. Further subcellular localization and biochemical analyses, as well as pharmacological studies, suggest that AtADF4 functions as a bona fide actin-depolymerizing factor through modifying the actin cytoskeleton. Unlike the documented mechanism by which the actin cytoskeleton plays roles in resistance against fungi and oomycetes, the resistance against P. syringae mediated by AtADF4 is not involved in hindering pathogen entry.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号