首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Implication of chlorophyll biosynthesis on chloroplast-to-nucleus retrograde signaling
Authors:Eevi Rintam?ki  Anna Lepist?  Saijaliisa Kangasj?rvi
Institution:Department of Biology; University of Turku; Turku, Finland
Abstract:The biogenesis and function of chloroplast are controlled both by anterograde mechanisms involving nuclear-encoded proteins targeted to chloroplast and by retrograde signals from plastid to nucleus contributing to regulation of nuclear gene expression. A number of experimental evidences support the implication of chlorophyll biosynthesis intermediates on the retrograde signaling, albeit an earlier-postulated direct link between accumulation of chlorophyll intermediates and changes in nuclear gene expression has recently been challenged. By characterization of Arabidopsis mutants lacking the chloroplast localized NADPH-thioredoxin reductase (NTRC) we have recently proposed that imbalanced activity of chlorophyll biosynthesis in developing cells modifies the chloroplast signals leading to alterations in nuclear gene expression. These signals appear to initiate from temporal perturbations in the flux through the pathway from protoporphyrin to protochlorophyllide rather than from the accumulation of a single intermediate of the tetrapyr-role pathway.Key words: chloroplast biogenesis, NADPH-thioredoxin reductase, porphyrins, ROS, signaling, tetrapyrrole, thioredoxinOrchestrated regulation of gene expression in the nucleus and plastids is crucial for the proper biogenesis of the organelle during the development and for the acclimation of plants to environmental cues. Multiple potential candidates for initiating plastidial signals have been recognized, including intermediates of the tetrapyrrole biosynthetic pathway, redox state of chloroplast electron transfer components and reactive oxygen species (ROS). These multiple signaling pathways are likely to interact with each others, resulting in a complex signaling network between plastid and nucleus (reviewed in ref. 1).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号