首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Two Plastidial Starch-Related Dikinases Sequentially Phosphorylate Glucosyl Residues at the Surface of Both the A- and B-Type Allomorphs of Crystallized Maltodextrins But the Mode of Action Differs
Authors:Mahdi Hejazi  Joerg Fettke  Oskar Paris  Martin Steup
Institution:Institute of Biochemistry and Biology, Department of Plant Physiology, University of Potsdam, 14476 Potsdam-Golm, Germany (M.H., J.F., M.S.); Mass Spectrometry of Biopolymers, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany (J.F.); and Max-Planck-Institute of Colloids and Surfaces, 14476 Potsdam-Golm, Germany (O.P.)
Abstract:In this study, two crystallized maltodextrins were generated that consist of the same oligoglucan pattern but differ strikingly in the physical order of double helices. As revealed by x-ray diffraction, they represent the highly ordered A- and B-type allomorphs. Both crystallized maltodextrins were similar in size distribution and birefringence. They were used as model substrates to study the consecutive action of the two starch-related dikinases, the glucan, water dikinase and the phosphoglucan, water dikinase. The glucan, water dikinase and the phosphoglucan, water dikinase selectively esterify glucosyl residues in the C6 and C3 positions, respectively. Recombinant glucan, water dikinase phosphorylated both allomorphs with similar rates and caused complete glucan solubilization. Soluble neutral maltodextrins inhibited the glucan, water dikinase-mediated phosphorylation of crystalline particles. Recombinant phosphoglucan, water dikinase phosphorylated both the A- and B-type allomorphs only following a prephosphorylation by the glucan, water dikinase, and the activity increased with the extent of prephosphorylation. The action of the phosphoglucan, water dikinase on the prephosphorylated A- and B-type allomorphs differed. When acting on the B-type allomorph, by far more phosphoglucans were solubilized as compared with the A type. However, with both allomorphs, the phosphoglucan, water dikinase formed significant amounts of monophosphorylated phosphoglucans. Thus, the enzyme is capable of acting on neutral maltodextrins. It is concluded that the actual carbohydrate substrate of the phosphoglucan, water dikinase is defined by physical rather than by chemical parameters. A model is proposed that explains, at the molecular level, the consecutive action of the two starch-related dikinases.In terms of quantity, starch is one of the most prominent photosynthesis-derived products. The global starch production by land plants has been estimated to be approximately 2,850 million tons per year (Burrell, 2003). Starch is highly relevant for nutrition in animals and humans, but it is also used for many industrial applications, such as additives in paper or textiles and in pharmacy products as well. In addition, starch appears to be increasingly important as a photosynthesis-based renewable energy source that can be converted into technologically relevant products such as bioethanol and hydrogen (Hannah and James, 2008; Zhang et al., 2008).Native starch is formed as a water-insoluble particle called a granule that is thought to comprise two types of polyglucans, amylopectin and amylose. The latter is an almost unbranched α-1,4-glucan and usually is the minor constituent of the starch particle, accounting for 10% to 35% of the total starch dry weight (Ball, 2000). However, in some mutants, the relative amylose content is strongly diminished, resulting in an essentially amylose-free starch (such as in the waxy mutant of maize Zea mays]), or, alternatively, it is increased, forming up to 70% of the starch mass (e.g. in the amylose extender mutant from maize; Gérard et al., 2001). Nevertheless, in wild-type starches, amylopectin typically is the major constituent that also is essential for the molecular organization of the glucans within the entire starch granule (Ball and Morell, 2003). Like glycogen, amylopectin is a branched α-glucan with 4% to 6% of the inter-Glc linkages being α-1,6-bonds (Ball, 2000); however, as opposed to glycogen, the branching points occur as intramolecular clusters. Due to the length distribution of the side chains and the clustering of the branching points, neighboring glucan chains are capable of forming highly ordered double helices (Smith, 2001; Zeeman et al., 2002).As revealed by x-ray diffraction analysis, two major native starch structures are known that differ in the arrangement of the double helices. The A-type allomorph, which is typical of wild-type cereal starches but also occurs in lower plants, is more compact, as compared with the B type, and consists of flat layers of double helices. By contrast, in the B-type allomorph, six double helices are thought to surround a central cavity that is filled with water molecules. The B-type allomorph is found in starch synthesized by dicotyledonal storage organs, such as potato (Solanum tuberosum) tubers, in some high-amylose starches from cereal mutants (Gallant et al., 1997; Gérard et al., 2001), and in assimilatory starches from potato and Arabidopsis (Arabidopsis thaliana) as well (Hejazi et al., 2008). Legume starches are believed to represent another allomorph that is designated the C type. However, this allomorph is actually a mixture of both the A- and B-type crystallites within a single native starch particle rather than a third distinct type of the double helical arrangement (Imberty et al., 1991; Bogracheva et al., 2001).It should be noted that both the A- and B-type allomorphs of native starch granules often contain, as a minor constituent, an additional crystal structure designated the V type. Unlike the A- and B-type allomorphs, the V type is assumed to arise from single amylose helices, some of which are complexed with endogenous granular lipids. When estimated for the dry state, the V-type crystal structure accounts for only a small percentage of the total starch granule crystallinity (Lopez-Rubio et al., 2008).The physical structure of the native starch particle is likely to have important biochemical implications, as it affects the performance of carbohydrate-active enzymes and, thereby, the transition of carbohydrates from the solid phase to the soluble phase. This conclusion has been reached by in vitro experiments demonstrating that the pancreas α-amylase hydrolyzes A-type starch faster than the B-type counterpart (Gérard et al., 2001).Another metabolically important feature of amylopectin is the occurrence of covalent modification by phosphate esters that are found in a small proportion of the glucosyl residues. Most frequently phosphorylation occurs at the C6 position of the glucosyl residue, but C3 and, to a minor extent, C2 can also be esterified (Hizukuri et al., 1970). Recently, evidence has been presented that the esterification of the C6 and C3 positions of glucosyl residues differs in the structural effects on the neighboring inter-Glc bonds (Hansen et al., 2009). Phosphorylation at C6 is mediated by the recently identified α-glucan, water dikinase (GWD; EC 2.7.9.4), which utilizes ATP as dual phosphate donor and three distinct acceptors, two of which are sequentially used. The enzyme transfers the terminal phosphate group to water (thereby forming orthophosphate) and the β-phosphate group first to a conserved His residue within the catalytic domain of the monomeric GWD and, subsequently, to the C6 target of the glucosyl residue to be phosphorylated (Ritte et al., 2002, 2006). Phosphorylation at C3 is catalyzed by a second dikinase, designated phosphoglucan, water dikinase (PWD; EC 2.7.9.5; Ritte et al., 2006). The amino acid sequence of the catalytic (C-terminal) domain of PWD shares similarity with that of GWD, and in principle, the PWD-mediated catalysis follows the same mode of action as GWD, including the transient autophosphorylation at a conserved His residue (Baunsgaard et al., 2005; Kötting et al., 2005). However, PWD deviates from GWD in the amino acid sequence of the N-terminal domain, especially in the carbohydrate-binding region. PWD possesses a single carbohydrate-binding module that has been grouped into the family CBM20 (Machovič and Janaček, 2006a, 2006b). By contrast, the N-terminal domain of GWD contains two putative carbohydrate-binding motifs similar to those of an α-amylase that presumably is located in the chloroplasts (Yu et al., 2005). However, the structure of these motifs is still not known; therefore, a sequence-based prediction of the actual carbohydrate target is not yet possible.GWD- and PWD-deficient Arabidopsis mutants possess to some extent similar but not equal phenotypes. Leaves of GWD-deficient lines (which contain essentially unchanged levels of functional PWD) have starch levels that are at least five times higher than those of the wild type and remain high even after prolonged darkness. Growth of the entire plant is strongly compromised. The phenotype of PWD-deficient mutants (which express functional GWD) is less severe, as growth is only slightly diminished and transitory starch levels are elevated but not as strongly as in the GWD-deficient lines. Mutants lacking functional PWD can degrade transitory starch, but net degradation occurs at a lower rate as compared with wild-type plants (Kötting et al., 2005). These data clearly indicate that, in vivo, PWD cannot substitute for GWD and that glucosyl 6-phosphate residues are involved in a more strict control of the starch turnover as compared with the C3 phosphate esters.When considering the metabolic function(s) of starch phosphorylation, it should be noted that phosphorylation occurs during both net starch synthesis and degradation, although the rates of phosphorylation are likely to be different (Nielsen et al., 1994; Ritte et al., 2004). It is reasonable, therefore, to assume that starch phosphorylation exerts an important role in the entire transitory starch metabolism, rather than being functional only during the degrading process (and, consequently, the starch-related dikinases cannot, in a strict sense, be considered as “starch-degrading enzymes”).Depending on the botanical source, the degree of starch phosphorylation varies strongly. In potato tuber starch, approximately 0.1% to 0.5% of the glucosyl residues are phosphorylated (Ritte et al., 2002), and this value is considered to be indicative of a high level of phosphorylation. By contrast, cereal starches contain a far lower relative phosphate content that often is close to the limit of detection (approximately 0.002%; Glaring et al., 2006). In principle, these differences could be due to different rates of phosphorylation, as catalyzed by the two starch-related dikinases, and this assumption seems to be supported by the observation that, in general, starches of the B-type allomorph appear to have a higher degree of phosphorylation as compared with those of the A-type allomorph. If so, the dikinases may preferentially act on the B-type allomorph. Alternatively, the phosphorylation catalyzed by the two dikinases could be balanced by counteracting phosphatases, such as SEX4. This plastidial enzyme has been shown to act as a (phospho)glucan phosphatase that is involved in leaf starch metabolism (Kötting et al., 2009). If antagonistic enzyme activities are taken into consideration, the actual level of starch phosphorylation is determined by the rate of both phosphorylation and the subsequent hydrolysis of phosphate esters and, consequently, does not necessarily reflect the action of the starch-related dikinases.Recently, crystallized maltodextrins (MDcryst) have been prepared that, by using x-ray diffraction, were identified as being the B-type allomorph and to possess a highly ordered structure (which exceeds that of native starch granules). MDcryst have been applied as a substrate for a recombinant GWD from potato. Using a carefully optimized assay, the rate of phosphorylation was by far higher than that observed with any other carbohydrate substrate, such as native starch granules or starch-derived polysaccharides. By contrast, solubilization by heat treatment of the MDcryst almost completely abolished the activity of GWD. Phosphorylation resulted in the formation of singly, doubly, and triply phosphorylated glucans and favored the solubilization of both neutral glucans and phosphoglucans (Hejazi et al., 2008). Recombinant PWD also phosphorylated MDcryst, provided the MDcryst had been prephosphorylated by GWD and were not solubilized by heat treatment (Hejazi et al., 2008).Because of the high phosphorylation rates and the phosphorylation pattern obtained, MDcryst are a suitable model carbohydrate that mimics phosphorylation-relevant features of highly ordered regions within the native starch granule. It allows study of the action of the two starch-related dikinases and the transition of carbohydrates from the solid to the soluble state without any other starch-related enzyme being required.Until now, only the B-type allomorph of the MDcryst has been applied as substrate of the two dikinases. Using native starch granules as a target, the rates of phosphorylation as obtained with recombinant GWD varied largely within the B-type allomorph (Hejazi et al., 2008); therefore, it is reasonable to assume that additional but largely unknown features of the native starch granule also strongly affect the action of GWD. This implies that any preference or specificity of the starch-related dikinases for a given allomorph can be analyzed most convincingly if MDcryst preparations representing both the B- and A-type allomorphs are available.In this study, we used two MDcryst preparations that are indistinguishable in their oligoglucan patterns but differ in the physical arrangement of the double helices and represent the highly ordered A- and B-type allomorphs. Using these two MDcryst preparations, we analyzed the action of the two starch-related dikinases. The size distribution of the MDcryst particles has been determined using the Coulter counter, and surface properties of both allomorphs were monitored by scanning electron microscopy. Thermal stability of the two allomorphs was analyzed by measuring the temperature dependence of light scattering. Finally, the phosphorylation-dependent solubilization of both allomorphs and the transition of (phospho)glucans into the soluble state have been studied.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号