首页 | 本学科首页   官方微博 | 高级检索  
     


Parameter redundancy in mark‐recovery models
Authors:Diana J. Cole  Byron J. T. Morgan  Edward A. Catchpole  Ben A. Hubbard
Affiliation:1. School of Mathematics, Statistics and Actuarial Science, University of Kent, , Canterbury, CT2 7NF England;2. University of New South Wales at the Australian Defence Force Academy, , Canberra, Australia
Abstract:We provide a definitive guide to parameter redundancy in mark‐recovery models, indicating, for a wide range of models, in which all the parameters are estimable, and in which models they are not. For these parameter‐redundant models, we identify the parameter combinations that can be estimated. Simple, general results are obtained, which hold irrespective of the duration of the studies. We also examine the effect real data have on whether or not models are parameter redundant, and show that results can be robust even with very sparse data. Covariates, as well as time‐ or age‐varying trends, can be added to models to overcome redundancy problems. We show how to determine, without further calculation, whether or not parameter‐redundant models are still parameter redundant after the addition of covariates or trends.
Keywords:Ecology  Extrinsic identifiability  Intrinsic identifiability  Ring‐recovery  Tag‐recovery models
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号