首页 | 本学科首页   官方微博 | 高级检索  
     


QTL‐seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations
Authors:Hiroki Takagi  Akira Abe  Kentaro Yoshida  Shunichi Kosugi  Satoshi Natsume  Chikako Mitsuoka  Aiko Uemura  Hiroe Utsushi  Muluneh Tamiru  Shohei Takuno  Hideki Innan  Liliana M. Cano  Sophien Kamoun  Ryohei Terauchi
Affiliation:1. Iwate Biotechnology Research Center, , Kitakami, Iwate, 024‐0003 Japan;2. United Graduate School of Iwate University, , Morioka, Iwate, 020‐8550 Japan;3. Iwate Agricultural Research Center, , Kitakami, Iwate, 024‐0003 Japan;4. Department of Plant Sciences, University of California, , Davis, CA, 95616 USA;5. Graduate University for Advanced Studies, , Hayama, Japan;6. The Sainsbury Laboratory, Norwich Research Park, , Norwich, UK
Abstract:The majority of agronomically important crop traits are quantitative, meaning that they are controlled by multiple genes each with a small effect (quantitative trait loci, QTLs). Mapping and isolation of QTLs is important for efficient crop breeding by marker‐assisted selection (MAS) and for a better understanding of the molecular mechanisms underlying the traits. However, since it requires the development and selection of DNA markers for linkage analysis, QTL analysis has been time‐consuming and labor‐intensive. Here we report the rapid identification of plant QTLs by whole‐genome resequencing of DNAs from two populations each composed of 20–50 individuals showing extreme opposite trait values for a given phenotype in a segregating progeny. We propose to name this approach QTL‐seq as applied to plant species. We applied QTL‐seq to rice recombinant inbred lines and F2 populations and successfully identified QTLs for important agronomic traits, such as partial resistance to the fungal rice blast disease and seedling vigor. Simulation study showed that QTL‐seq is able to detect QTLs over wide ranges of experimental variables, and the method can be generally applied in population genomics studies to rapidly identify genomic regions that underwent artificial or natural selective sweeps.
Keywords:quantitative trait loci  breeding  whole genome sequencing  next generation sequencer  selective sweep  technical advance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号