首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase
Authors:Ling Min  Longfu Zhu  Lili Tu  Fenglin Deng  Daojun Yuan  Xianlong Zhang
Institution:National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, , Wuhan, Hubei, 430070 China
Abstract:Anther infertility under high temperature (HT) conditions is a critical factor contributing to yield loss in cotton (Gossypium hirsutum). Using large‐scale expression profile sequencing, we studied the effect of HT on cotton anther development. Our analysis revealed that altered carbohydrate metabolism or disrupted tapetal programmed cell death (PCD) underlie anther sterility. Expression of the Gossypium hirsutum casein kinase I (GhCKI) gene, which encodes a homolog of casein kinase I (CKI), was induced in an HT‐sensitive cotton line after exposure to HT. As mammalian homologs of GhCKI are involved in inactivation of glycogen synthase and the regulation of apoptosis, GhCKI may be considered a target gene for improving anther fertility under HT conditions. Our studies suggest that GhCKI exhibits starch synthase kinase activity, increases glucose content in early‐stage buds and activates the accumulation of abscisic acid, thereby disturbing the balance of reactive oxygen species and eventually disrupting tapetal PCD, leading to anther abortion or indehiscence. These results indicate that GhCKI may be a key regulator of tapetal PCD and anther dehiscence, with the potential to facilitate regulation of HT tolerance in crops.
Keywords:   Gossypium hirsutum     casein kinase I  high temperature  anther abortion  programmed cell death  starch synthase  Arabidopsis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号