首页 | 本学科首页   官方微博 | 高级检索  
     


Radioiodine-131 therapy (RIT) in benign thyroid diseases: Personalized prescription based on objectives with optional use of pharmacological modulators
Affiliation:1. Servicio de Radiodiagnóstico, Hospital Universitario La Paz, Madrid, España;2. Servicio de Cardiología Pediátrica, Hospital Universitario La Paz, Madrid, España;3. Unidad de Bioestadística, Hospital Universitario La Paz, Madrid, España;4. Servicio de Cirugía Cardiaca Pediátrica, Hospital Universitario La Paz, Madrid, España;5. Servicio de Cardiología, Unidad de Cardiopatías Congénitas del Adulto, Hospital Universitario La Paz, Madrid, España;1. Service de médecine nucléaire, CHU de Fort-de-France, CS 90632, 97261 Fort-de-France cedex, Martinique;2. Service de médecine nucléaire, hôpital Haut-Lévêque, université de Bordeaux, CHU de Bordeaux, avenue Magellan, 33604 Pessac, France;3. Service central de biophysique et de médecine nucléaire, université Aix-Marseille, CHU de la Timone, 264, rue Saint-Pierre, 13385 Marseille cedex 05, France;4. Service de médecine nucléaire, institut universitaire du cancer Toulouse Oncopole, 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex 9, France;1. Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Rome, Italy;2. Risk Management and Technology Assessment, Medical Physics Unit, Bambino Gesù Children’s Hospital, IRCCS, P.zza S. Onofrio 4, 00165 Rome, Italy;3. Department of Nuclear Medicine, Istituto Nazionale Tumori IRCCS Foundation, Via Venezian 1, 20133 Milan, Italy;4. Department of Medical Physics, ASL Latina, Via Canova 3, 04100 Latina, Italy;5. Department of Medical Physics, Istituto Europeo di Oncologia, Via Giuseppe Ripamonti 435, 20141 Milan, Italy;6. Department of Medical Physics, Policlinico S.Orsola-Malpighi, Via Pietro Albertoni 15, 40138 Bologna, Italy;7. Section of Radiological Sciences, Department of Biomedical Sciences and of Morphologic and Functional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;8. Department of Medical Physics, Azienda Ospedaliera S. Maria Nuova, IRCCS, Viale risorgimento 57, 42123 Reggio Emilia, Italy;9. Postgraduate School of Medical Physics, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;10. Department of Molecular Medicine, “Sapienza” University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;11. Department of Radiological, Oncological and Anatomo Pathological Sciences, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;12. Department of Medico-surgical Sciences and Biotechnologies, “Sapienza” University of Rome, Corso della Repubblica 79, 04100 Latina, Italy;13. Radiation Research Unit, Istituto Europeo di Oncologia, Via Giuseppe Ripamonti 435, 20141 Milan, Italy;13. Clermont, France;14. Strasbourg, France;15. Nice, France;p. Marseille, France;q. Paris, France;r. Lyon, France;s. Paris, France;t. Nîmes, France;u. Rennes, France;v. Nantes, France;w. Toulouse, France;x. Tours, France;y. Lille, France;z. Nancy, France;1. Department of Nuclear Medicine & Nancyclotep Imaging platform, CHRU-Nancy, Université de Lorraine, 54000 Nancy, France;2. Université de Lorraine, IADI, INSERM, UMR 1254, 54000 Nancy, France;3. Nuclear Medicine Department, Pitié-Salpêtrière Hospital, AP–HP, Sorbonne Université, 75000 Paris, France;4. Laboratoire d’Imagerie Biomédicale, Sorbonne Université, 75000 Paris, France;5. Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d’Azur (UCA), 06189 Nice, France;6. Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), UMR E 4320, CEA, UCA, 06189 Nice, France;7. Department of Neuro-Oncology, Hôpital de la Timone, Aix-Marseille University, AP–HM, 13000 Marseille, France;8. Department of Neuro-oncology, CHRU-Nancy, Université de Lorraine, 54000 Nancy, France;9. Department of Neurology-2, Pitié-Salpêtrière Hospital, AP–HP, Sorbonne Université, 75000 Paris, France;10. Department of Nuclear Medicine, Assistance publique–Hôpitaux de Marseille, Aix-Marseille Université, Timone University Hospital, 13000 Marseille, France;11. CERIMED, Aix-Marseille Université, 13000 Marseille, France;12. Aix-Marseille Université, CNRS, École Centrale de Marseille, UMR 7249, Institut Fresnel, 13000 Marseille, France;1. Department of Neurological Surgery, University of California, San Francisco, California, USA;2. Department of Pathology, University of California, San Francisco, California, USA
Abstract:131I therapy (RIT) in benign thyroid diseases is the oldest and most currently used application of internal radiotherapy. With the new molecular 123I-TS images one may identify 15 presentations that can benefit from RIT. With three groups of activity determination corresponding to a dozen approaching protocols, several judgmental criteria (eu-, hypo-, hyperthyroidism, relapses etc.) and varying timeframes to assess the success, a “best method of activity calculation” makes little sense. Four clinical objectives must be first identified (goal): antitoxic (euthyroidism), ablative (hypothyroidism), reductive (to reduce a targeted volume) and preventive (to prevent progression from compensated to overt hyperthyroidism) 131I-RIT. A dose response relationship as regards the target volume reduction is firmly established in the short term (1-year) and explains the clinical outcome in Thyroid Functional Autonomy (TFA). In Grave's disease (GD), other factors may interfere that make the long-term function less predictable. Pharmacological modulators of 131I-RIT such as antithyroid drugs (ATDs) and LT3 must be skillfully handled. ATDs interfere with iodine kinetics, enhance the heterogeneity of the spatial dose deposition and diminish the accuracy of absorbed dose deposition, especially when using poorly controlled dosimetric approaches. Short LT3 administration suppresses TSH that allows direct targeting of the autonomously functioning thyroid tissue. The three main groups and variants of activity calculation are presented in detail. Calculating the activity allows a 50% average reduction in the 131I administered dose. Medical strategy should favour the informed patient's choice, after excluding the rare medical causes prompting discussion of an ablative approach. In TFA, low occurrence of hypothyroidism is the rule provided the treatment be given with a TSH < 0.1 mU/L, spontaneously or after LT3 suppression (compensated variety). In GD a long-term remission is rare (< 30%) and should be thoroughly discussed since it leads to euthyroidism in approximately 50% after a 12-year follow-up. Depending on the etiology (GD/TFA) and the 4 clinical goals, 131I RIT planning is presented with optional choice of a patient adapted method of activity calculation and appropriate management of pharmacological modulators.
Keywords:Thyroid Scan  Hyperthyroidism  Image Quantification  Dosimetry  Methods of Dose selection  Spatial dose distribution  Antithyroid drugs  Scintigraphie thyroïdienne  Hyperthyroïdie  Quantification de l’image  Dosimétrie  Méthodes de Calcul des Activités  Distribution spatiale de la dose  Antithyroïdiens
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号