首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The functional role of sequentially neuromodulated synaptic plasticity in behavioural learning
Authors:Grace Wan Yu Ang  Clara S Tang  Y Audrey Hay  Sara Zannone  Ole Paulsen  Claudia Clopath
Institution:1. Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom ; 2. Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom ; Dartmouth College, UNITED STATES
Abstract:To survive, animals have to quickly modify their behaviour when the reward changes. The internal representations responsible for this are updated through synaptic weight changes, mediated by certain neuromodulators conveying feedback from the environment. In previous experiments, we discovered a form of hippocampal Spike-Timing-Dependent-Plasticity (STDP) that is sequentially modulated by acetylcholine and dopamine. Acetylcholine facilitates synaptic depression, while dopamine retroactively converts the depression into potentiation. When these experimental findings were implemented as a learning rule in a computational model, our simulations showed that cholinergic-facilitated depression is important for reversal learning. In the present study, we tested the model’s prediction by optogenetically inactivating cholinergic neurons in mice during a hippocampus-dependent spatial learning task with changing rewards. We found that reversal learning, but not initial place learning, was impaired, verifying our computational prediction that acetylcholine-modulated plasticity promotes the unlearning of old reward locations. Further, differences in neuromodulator concentrations in the model captured mouse-by-mouse performance variability in the optogenetic experiments. Our line of work sheds light on how neuromodulators enable the learning of new contingencies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号