首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Altitude modifies species richness–nutrient indicator value relationships in a country-wide survey of grassland vegetation
Institution:1. Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, 8092 Zürich, Switzerland;2. Agroscope Reckenholz-Tänikon Research Station ART, 8046 Zürich, Switzerland;3. Biodiversity Monitoring Switzerland, c/o Hintermann & Weber AG, Austrasse 2a, 4153 Reinach, Switzerland;1. Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China;2. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China;3. University of Chinese Academy of Sciences, Beijing 100049, PR China;1. Graduate School, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile;2. Instituto de Producción Animal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile;3. Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand;4. Instituto de Ingeniería Agraria y Suelos, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile;5. Queensland Climate Change Centre of Excellence, Queensland Department of Environment and Resource Management, Australia;1. Institute of Integrative Biology, Department of Evolution, Ecology, and Behaviour, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom;2. Plant Biology, CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto. Campus Agrário de Vairão, 4485-661 Vairão, Portugal;1. Université de Lorraine, UMR Institut Elie Cartan, F-54506 Vandoeuvre-lès-Nancy, France;2. INRA, Biogéochimie des Ecosystèmes Forestiers, F-54280 Champenoux, France;3. CIRAD, UMR Eco&Sols, F-34060 Montpellier, France;4. CATIE, Tropical Agricultural Research and Higher Education Center, 7170 Turrialba, Costa Rica;5. Departamento Recursos Naturais, Universidade Estadual de São Paulo, UNESP, Botucatu, SP 18610-307, Brazil;6. USP, Universidade de São Paulo, ESALQ, Departamento de Ciências Atmosféricas, IAG, CEP 05508-900 São Paulo, Brazil;7. Univ. Paris-Sud, Laboratoire Ecologie Systématique et Evolution, UMR8079, Orsay F-91405, France;1. Dipartimento di Scienze della Vita e dell׳Ambiente, Università degli Studi di Cagliari, Via T. Fiorelli 1, 09126 Cagliari, Italia;2. The Arctic University of Norway, Tromsø, Norway;3. GRC Geociències Marines, Departament d’Estratigrafia, Paleontologia i Geociències Marines, Universitat de Barcelona, Barcelona, Spain;4. CEFREM, UMR CNRS 5110, CNRS-Univ. Perpignan, Perpignan, France;5. Stazione Zoologica Anton Dohrn, Villa Comunale I, Napoli, Italia;1. CERENA – Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa (CERENA-IST), Portugal;2. Ce3C – Centre for Ecology, Evolution and Environmental Changes (Ce3C-FCUL), Faculdade de Ciências, Universidade de Lisboa, Portugal;3. CESAM – Centre for Environmental and Marine Studies, Universidade de Aveiro, Portugal;4. ICNF – Instituto da Conservação da Natureza e das Florestas, Portugal
Abstract:Nutrient enrichment is a threat to botanical diversity in Europe, and its assessment is part of biodiversity monitoring schemes. In Switzerland, this is done by calculating the average nutrient (N) indicator value of the vegetation based on a country-wide systematic vegetation survey. However, it is questionable whether N values indicate eutrophication and resulting species loss equally well across an entire country, which includes wide topographic gradients and distinct biogeographic regions. Here we analyze vascular plant species lists from 415 grassland plots (10 m2) between 365 and 2770 m a.s.l. throughout Switzerland to investigate how the relationship between N value and species richness differs with altitude and among regions. The N value strongly decreased with altitude (piecewise regression: r2 = 0.77), particularly between 800 and 2000 m a.s.l., where this decrease was related to a decreasing proportion of fertilized grasslands. In the alpine belt, lower N values were associated with a greater frequency of acidic soils and a restricted species pool. Vascular plant species richness was maximal at intermediate altitude (piecewise regression: r2 = 0.33) and intermediate N value (polynomial regression: r2 = 0.46). When analyzed separately by altitudinal belt, the relationship between species richness and N value was negative in the lowlands and montane belt but unimodal in the subalpine belt. In the alpine belt, soil pH (R indicator values) explained most of the variation in species richness. Two indices of between-plot diversity (floristic dissimilarity and the contribution of individual plots to total species richness) were negatively related to N values from the lowlands to the subalpine belt but not in the alpine belt. All relationships differed little among the biogeographic regions of Switzerland, but they might be modified by changes in management and by the expansion of common lowland species into mountain grasslands.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号