首页 | 本学科首页   官方微博 | 高级检索  
     


Plant species richness in a natural Argentinian matorral shrub-land correlates negatively with levels of plant phosphorus
Authors:Ylva-Li Blanck  Juan Gowda  Linda-Maria M?rtensson  Jakob Sandberg  Ann-Mari Fransson
Affiliation:1. Plant Ecology and Systematics, Department of Ecology, Lund University, Lund, Sweden
2. Laboratorio Ecotono, CONICET-INIBIOMA-CRUB, Bariloche, Argentina
3. Landscape Management, Design and Construction, Swedish University of Agriculture, Uppsala, Sweden
Abstract:The aim of this study was to ascertain whether there is a relationship between plant species richness and plant-available N, P and water in an environment subject to little anthropogenic disturbance. To accomplish this we studied the vegetation in matorral shrub-lands in northern Patagonia, Argentina. Due to the variation in slope, precipitation and aspect between the sites water status was determined using the 12C/13C fraction, ??13C, to investigate whether this was a confounding factor. The numbers of herb, shrub, liana and tree species were determined at 20 sites along an estimated precipitation gradient. Leaf P and N content and the ??13C of Berberis buxifolia were determined, as well as the soil P and N content at the different sites. A negative correlation was found between species richness and Berberis buxifolia foliar P concentration (52% of the species richness variation was accounted for), and a positive correlation was found between plant species richness and Berberis buxifolia foliar N: P ratios (54% of the species richness variation was accounted for). The relationship between species richness and foliar P was seen when all layers of vegetation were included (trees, lianas, shrubs and herbs). Foliar N showed no correlation with species richness, while soil extractable NH4 showed a weak positive correlation with the number of shrub layer species (lianas, shrubs and trees). The species richness of the shrub layer increased with decreasing values of ??13C. Low soil P availability thus affects local species richness in the matorral shrub-lands of Patagonia in Argentina although the growth of vegetation in the area has been shown to be limited by N. We suggest that low P levels increase plant species richness because low soil P concentration is associated with a high P partitioning and high potential for niche separation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号