首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Demyelination-Induced Inflammation Attracts Newly Born Neurons to the White Matter
Authors:Samah Kalakh  Abdeslam Mouihate
Institution:1.Department of Physiology, Faculty of Medicine, Health Sciences Centre,Kuwait University,Safat,Kuwait
Abstract:There is compelling evidence that microglial activation negatively impacts neurogenesis. However, microglia have also been shown to promote recruitment of newly born neurons to injured areas of the gray matter. In the present study, we explored whether demyelination-triggered inflammation alters the process of neurogenesis in the white matter. A 2-μl solution of 0.04 % ethidium bromide was stereotaxically injected into the corpus callosum of adult male rats. Brain inflammation was dampened by daily injections of progesterone (5 mg/kg, s.c.) for 14 days. Control rats received oil (s.c.). Newly born neurons (DCX and Tbr2), microglia (Iba-1), astrocytes (vimentin or GFAP), oligodendrocyte progenitor cells (OPCs; NG2), and mature oligodendrocytes (CC-1) were monitored in the vicinity of demyelination site using immunofluorescent staining. Western blot was used to explore microglial polarization using M1 (iNOS) and M2 (arginase-1) markers. Focal demyelination elicited strong microglial and astroglial activation and reduced the number of OPCs at the site of demyelination. This inflammatory response was associated with enhanced number of newly born neurons in the white matter and the subventricular zone (SVZ). A proportion of newly born neurons within the white matter showed features of OPCs. Interestingly, blunting brain inflammation led to reduced neurogenesis around the demyelination area and in the SVZ. These data suggest that the white matter inflammation creates a conducive environment for the recruitment of newly born neurons. The fact that a sizable fraction of these newly born neurons adopt OPC features suggests that they could contribute to the remyelination process.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号