首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A highly sensitive colorimetric microplate ferrocyanide assay applied to ascorbate-stimulated transplasma membrane ferricyanide reduction and mitochondrial succinate oxidation
Authors:Lane Darius J R  Lawen Alfons
Institution:Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia.
Abstract:Ferricyanide reduction frequently is analyzed to determine the activity of membraneous reductases. An improved, highly sensitive, and rapid method for quantitative endpoint determination of ferrocyanide is presented. Ferrocyanide is oxidized by Fe(3+) in the presence of Ferene-S under acid conditions to form a chromogenic Ferene-S/Fe(2+) complex. The latter is quantitated at 593 nm with a sensitivity of 33.2 mM(-1) . cm(-1). The assay is 60% more sensitive to ferrocyanide (and with a 50% lower detection limit) than the prevailing method of Avron and Shavit, which employs sulfonated bathophenanthroline as the ferrous chromogen. Both pH dependence and potential sources of interference are discussed. Using the method, a sulfhydryl-sensitive, ascorbate-stimulated transplasma membrane ferricyanide reductase was assayed in human chronic myeloid (K562) leukemia cells. Furthermore, malonate-sensitive succinate dehydrogenase activity of heart mitochondria was easily assayed with ferricyanide as terminal electron acceptor. The current method will suit routine applications demanding high throughput, robustness, and sensitivity in a 96-well plate format.
Keywords:Ferricyanide  Ferene-S  Transplasma membrane electron transport  Ascorbate  Dehydroascorbic acid  Succinate dehydrogenase
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号