首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of temperature on [3H]ryanodine binding to sarcoplasmic reticulum from bullfrog skeletal muscle
Authors:Y Ogawa  H Harafuji
Institution:Department of Pharmacology, Juntendo University School of Medicine, Tokyo.
Abstract:It has been clarified that ryanodine binds to Ca2(+)-induced Ca release channels in the open state in sarcoplasmic reticulum. While the pharmacological action of ryanodine is known to be retarded at a low temperature, the Ca-releasing action of caffeine is potentiated at a low temperature. In order to obtain deeper insight into the molecular mechanism underlying Ca-release, the effect of temperature on ryanodine binding to the heavy fraction of sarcoplasmic reticulum (HFSR) from bullfrog skeletal muscle was examined. Although Ca2+ is indispensable for ryanodine binding, Ca2+ alone cannot cause ryanodine binding in a reaction medium of a salt concentration similar to that of the sarcoplasm. In addition to Ca2+, caffeine and/or beta,gamma-methylene adenosine triphosphate (AMPOPCP) are necessary. 3H]Ryanodine binding at 25 degrees C closely paralleled the Ca release activity in respect of the Ca2(+)-dependence in the presence of caffeine and/or AMPOPCP, and the effects of inhibitors. A Scatchard plot for ryanodine binding gave a straight linear line, indicating a single class of homogeneous binding sites. At 0 degrees C, the rate of ryanodine binding decreased. Q10 being about 3 on average. The affinity for ryanodine was reduced to about half that at 25 degrees C, with no change in the maximum number of binding sites. The temperature-dependent change in apparent affinity for Ca2+ on ryanodine binding is not always consistent with that in the case of Ca-release activity. The bound ryanodine may be in an occluded state because it did not dissociate for up to 90 h at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号