首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of calculation and experiment implicates significant electrostatic contributions to the binding stability of barnase and barstar
Authors:Dong Feng  Vijayakumar M  Zhou Huan-Xiang
Affiliation:Department of Physics, Florida State University, Tallahassee, Florida 32306, USA.
Abstract:The contributions of electrostatic interactions to the binding stability of barnase and barstar were studied by the Poisson-Boltzmann model with three different protocols: a), the dielectric boundary specified as the van der Waals (vdW) surface of the protein along with a protein dielectric constant (epsilon (p)) of 4; b), the dielectric boundary specified as the molecular (i.e., solvent-exclusion (SE)) surface along with epsilon (p) = 4; and c), "SE + epsilon (p) = 20." The "vdW + epsilon (p) = 4" and "SE + epsilon (p) = 20" protocols predicted an overall electrostatic stabilization whereas the "SE + epsilon (p) = 4" protocol predicted an overall electrostatic destabilization. The "vdW + epsilon (p) = 4" protocol was most consistent with experiment. It quantitatively reproduced the observed effects of 17 mutations neutralizing charged residues lining the binding interface and the measured coupling energies of six charge pairs across the interface and reasonably rationalized the experimental ionic strength and pH dependences of the binding constant. In contrast, the "SE + epsilon (p) = 4" protocol predicted significantly larger coupling energies of charge pairs whereas the "SE + epsilon (p) = 20" protocol did not predict any pH dependence. This study calls for further scrutiny of the different Poisson-Boltzmann protocols and demonstrates potential danger in drawing conclusions on electrostatic contributions based on a particular calculation protocol.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号