首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Control of Adult Neurogenesis by Short-Range Morphogenic-Signaling Molecules
Authors:Youngshik Choe  Samuel J Pleasure  Helena Mira
Institution:1.Department of Neurology, Programs in Neuroscience, Developmental and Stem Cell Biology, UCSF Institute for Regeneration Medicine, San Francisco, California 94158;2.Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
Abstract:Adult neurogenesis is dynamically regulated by a tangled web of local signals emanating from the neural stem cell (NSC) microenvironment. Both soluble and membrane-bound niche factors have been identified as determinants of adult neurogenesis, including morphogens. Here, we review our current understanding of the role and mechanisms of short-range morphogen ligands from the Wnt, Notch, Sonic hedgehog, and bone morphogenetic protein (BMP) families in the regulation of adult neurogenesis. These morphogens are ideally suited to fine-tune stem-cell behavior, progenitor expansion, and differentiation, thereby influencing all stages of the neurogenesis process. We discuss cross talk between their signaling pathways and highlight findings of embryonic development that provide a relevant context for understanding neurogenesis in the adult brain. We also review emerging examples showing that the web of morphogens is in fact tightly linked to the regulation of neurogenesis by diverse physiologic processes.Neurogenesis in the adult mammalian brain is dynamically regulated by a number of genetic and epigenetic intrinsic factors as well as by extrinsic cues (Ninkovic and Götz 2007; Ma et al. 2010; Faigle and Song 2013). Among the latter, local signals emanating from the neural stem cell (NSC) microenvironment are thought to play a prominent modulatory role. This microenvironment, often referred to as the NSC or neurogenic “niche,” is viewed as a complex entity composed of stem and precursor cells, the surrounding mature cell types, cell-to-cell interactions, the extracellular matrix, the basal lamina, and secreted factors (Doetsch 2003). The principal mature cellular constituents of the adult NSC niches are parenchymal astroglial cells, the vasculature, microglia, and ependymal cells, all of which secrete a variety of molecules that mainly control stem-cell behavior, but also influence other stages of the adult neurogenesis process (Basak and Taylor 2009; Mu et al. 2010; Ihrie and Alvarez-Buylla 2011).As opposed to the majority of adult brain regions, the subventricular zone (SVZ) and the dentate gyrus (DG) subgranular zone (SGZ) niches are instructive milieus that allow NSC proliferation while promoting the specification and differentiation of new neurons. The relevance of the SVZ and SGZ microenvironments in adult neurogenesis was first evidenced by heterotopic transplantation experiments showing that precursor cells from a neurogenic niche, such as the SVZ, differentiate into glial cells and not into neurons when grafted to nonneurogenic areas of the brain (Seidenfaden et al. 2006). In contrast, SVZ or spinal cord precursor cells generated neurons when transplanted to a neurogenic region, such as the hippocampal DG (Suhonen et al. 1996; Shihabuddin et al. 2000). Although other in vivo studies have shown that SVZ-derived precursors maintain a certain degree of region-specific potential that is not respecified on transplantation to ectopic sites (Merkle et al. 2007), most studies suggest that local cues in the neurogenic brain niches are key for neuronal differentiation to occur. On the other hand, combined transplantation of both NSCs and niche cells to nonneurogenic areas, or expression of niche factors at the site where NSCs are grafted, promotes neuronal differentiation (Lim et al. 2000, Jiao and Chen 2008). Thus, it has progressively become apparent that extrinsic signals produced by niche cells enable the adult neurogenic program to proceed.More recently, transgenic and virus-based approaches allowing cell type- and temporal-specific manipulation of gene expression in the niches have provided great insights into the identity of the extrinsic signals regulating neurogenesis in vivo and into the molecular mechanisms elicited by those signals. Several soluble and membrane-bound factors have been identified as determinants of SVZ and SGZ neurogenesis, including morphogens, growth factors, neurotrophins, and neurotransmitters. Among these determinants, morphogens are ideally suited to fine-tune the sophisticated processes of stem-cell activation, progenitor expansion, and differentiation required for proper adult neurogenesis. Morphogens are defined as signaling molecules that pattern developing tissues in a concentration-dependent manner (Ashe and Briscoe 2006; Rogers and Schier 2011). They mostly operate in long-range gradients created by synthesis and diffusion of the morphogen proteins from a source and clearance during their flux by diverse mechanisms, such as immobilization, degradation, or endocytosis. Additional molecules that act as anti- or promorphogens further refine their activity. It is important to note that, although morphogens are graded signals, the response they elicit is not graded. Small differences in the concentration of a morphogen can trigger sharp thresholds in the expression of target genes. In addition, morphogens can also act at short range. Lipidation and low-affinity interactions with extracellular matrix components confine the movement of some morphogen proteins and promote effective morphogen–receptor interactions at the cell surface. Cells exposed locally to different morphogen doses respond by adopting different fates and, in this way, a morphogen can assign positional information to cells within a structure or territory, such as a stem-cell niche, and provoke different niche responses or outputs depending on the context (Ashe and Briscoe 2006; Rogers and Schier 2011).Here, we review our current understanding of the role and mechanisms of short-range niche morphogens, including ligands from the Wnt, Notch, Sonic hedgehog, and bone morphogenetic protein (BMP) families, in the regulation of adult neurogenesis. We discuss cross talk between their signaling pathways and intersection with other signaling pathways operating in the niches. We also highlight findings and emerging principles of embryonic development that provide a relevant context for understanding the growing field of adult neurogenesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号