首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In vitro and in vivo studies of potential biomarkers of lead and uranium contamination: lipid peroxidation, acetylcholinesterase, catalase and glutathione peroxidase activities in three non-mammalian species
Authors:F Labrot  D Ribera  M Saint Denis  J F Narbonne
Abstract:The aim of this work was to assess the relationships between lead (Pb) and uranium (U) exposure, lipid peroxidation and some enzyme activities in a mollusc (Cohicula sp.), an earthworm (Eisenia fetida) and a fish (Brachydanio redo). A comparative shrdy was perfotmed both in vibo and in vivo on whole organism postmitochondrial fractions and four potential biomarken were analyted: a marker of neurotoxicity (acetylcholinesterase activity, AChE, EC 3.1.1.7), a marker of oxidative sbss (malondialdehyde (MDA) level), and two markers of hydroperoxide detoxication: catalase (EC 1.11.1.6) and glutathione pemxidase (GPx, EC 1.11.1.9) activities. Our results have shown that the MDA contents were not signilicantty changed by exposures to lead either in vitro or in vivo. During uranium exposure, the MDA content was increased in vitro (particularly in fish samples) whereas this metal failed to sthnulate Spid peroxidation in vivo. With some exceptions, in vitro and in vivo exposures to lead and uranium showed that the AChE, catalase and GPx acbirites were decreased in the three species. These exceptions indicated that different mechanisms occurred in the different species. In conclusion, it was shown that S9 fractions of whole organisms could be useful for environmental contamination biomonitoring. Moreover, it was shown that AChE activities wen modulated by metals in viva and cannot be considered as specific bomarken of organophosphorus or carbaw pedcide exposure. Acetylcholinesterase and catalase activieies cwld be used to survey lead and uranium contamination.
Keywords:Mollusk  fish  earthworm  lead  uranium  biomarkers
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号