首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Divergence of mitochondrial dna is not corroborated by nuclear dna, morphology, or behavior in Drosophila simulans
Authors:Ballard J William O  Chernoff Barry  James Avis C
Institution:Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242;Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605-2496
Abstract:We ask whether the observed mitochondrial DNA (mtDNA) population subdivision of Drosophila simulans is indicative of organismal structure or of specific processes acting on the mitochondrial genome. Factors either intrinsic or extrinsic to the host genome may influence the evolutionary dynamics of mtDNA. Potential intrinsic factors include adaptation of the mitochondrial genome and of nucleomitochondrial gene complexes specific to the local environment. An extrinsic force that has been shown to influence mtDNA evolution in invertebrates is the bacterial endosymbiont Wolbachia. Evidence presented in this study suggests that mtDNA is not a good indicator of organismal subdivision in D. simulans. Furthermore, there is no evidence to suggest that Wolbachia causes any reduction in nuclear gene flow in this species. The observed differentiation in mtDNA is not corroborated by data from NADH: ubiquinone reductase 75kD subunit precursor or the Alcohol dehydrogenase-related loci, from the shape or size of the male genital arch, or from assortative premating behavior. We discuss these results in relation to a mitochondrial genetic species concept and the potential for Wolbachia-induced incompatibility to be a mechanism of speciation in insects. We conclude with an iterated appeal to include phylogenetic and statistical tests of neutrality as a supplement to phylogenetic and population genetic analyses when using mtDNA as an evolutionary marker.
Keywords:Behavior  Drosophila simulans  mitochondrial variability  morphometrics  species concepts  Wolbachia
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号