首页 | 本学科首页   官方微博 | 高级检索  
     


Dissolved extracellular polymeric substances (dEPS) dynamics and bacterial growth during sea ice formation in an ice tank study
Authors:Shazia N. Aslam  Graham J. C. Underwood  Hermanni Kaartokallio  Louiza Norman  Riitta Autio  Michael Fischer  Harri Kuosa  Gerhard S. Dieckmann  David N. Thomas
Affiliation:1.Department of Biological Sciences,University of Essex,Colchester,UK;2.Finnish Environment Institute (SYKE),Marine Research Centre,Helsinki,Finland;3.Ocean Sciences, College of Natural Science,Bangor University,Anglesey,UK;4.Alfred Wegener Institute for Polar and Marine Research,Bremerhaven,Germany;5.Tv?rminne Zoological Station,University of Helsinki,Helsinki,Finland
Abstract:Extracellular polymeric substances (EPS) are known to help microorganisms to survive under extreme conditions in sea ice. High concentrations of EPS are reported in sea ice from both poles; however, production and dynamics of EPS during sea ice formation have been little studied to date. This investigation followed the production and partitioning of existing and newly formed dissolved organic matter (DOM) including dissolved carbohydrates (dCHO), dissolved uronic acids (dUA) and dissolved EPS (dEPS), along with bacterial abundances during early stages of ice formation. Sea ice was formed from North Sea water with (A) ambient DOM (NSW) and (B) with additional algal-derived DOM (ADOM) in a 6d experiment in replicated mesocosms. In ADOM seawater, total bacterial numbers (TBN) increased throughout the experiment, whereas bacterial growth occurred for 5d only in the NSW seawater. TBN progressively decreased within developing sea ice but with a 2-fold greater decline in NSW compared to ADOM ice. There were significant increases in the concentrations of dCHO in ice. Percentage contribution of dEPS was highest (63%) in the colder, uppermost parts in ADOM ice suggesting the development of a cold-adapted community, producing dEPS possibly for cryo-protection and/or protection from high salinity brines. We conclude that in the early stages of ice formation, allochthonous organic matter was incorporated from parent seawater into sea ice and that once ice formation had established, there were significant changes in the concentrations and composition of dissolved organic carbon pool, resulting mainly from the production of autochthonous DOM by the bacteria.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号