首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fructose 2,6-bisphosphate and glycolytic oscillations in skeletal muscle extracts
Authors:K Tornheim
Institution:Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118.
Abstract:Oscillatory behavior of glycolysis in cell-free extracts of rat skeletal muscle involves bursts of phosphofructokinase activity due to autocatalytic activation by fructose-1,6-P2. Fructose-2,6-P2 is an even more potent activator of phosphofructokinase and is competitive with fructose-1,6-P2 in binding and kinetic studies. The possible role and effects of fructose-2,6-P2 on the oscillating system were therefore examined. When muscle extracts were provided with 1 mM ATP and 10 mM glucose, fructose-2,6-P2 slowly accumulated to 50 nM in 1 h. The nearly monotonic rise, in contrast to the 50-fold oscillations in fructose-1,6-P2, indicated no involvement of fructose-2,6-P2 in the oscillatory process. Addition of 0.5 microM fructose-2,6-P2 blocked the oscillations, and there was negligible appearance of glycolytic intermediates from fructose-1,6-P2 to phosphoenolpyruvate, although similar amounts of lactate accumulated. In the presence of 0.2 microM fructose-2,6-P2, there were small, transient accumulations of fructose-1,6-P2, suggesting aborted activations of phosphofructokinase. Oscillations were not blocked by 0.1 microM fructose-2,6-P2. The average ATP]/ADP] ratio in the presence of 0.2 or 0.5 microM fructose-2,6-P2 was half the value in its absence, demonstrating the advantage of the oscillatory behavior in maintaining a high energy state. In the presence of higher, near physiological levels of ATP and citrate, inhibitors which reduce the affinity of phosphofructokinase for fructose-2,6-P2, glycolytic oscillations were not blocked by 1 microM fructose-2,6-P2, its approximate concentration in vivo.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号