首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of somite manipulation on the development of motoneuron projection patterns in the embryonic chick hindlimb
Authors:C Lance-Jones
Affiliation:Department of Neurobiology, Anatomy and Cell Science, University of Pittsburgh, School of Medicine, Pennsylvania 15261.
Abstract:Although the formation of motoneuron projections to individual muscles in the embryonic chick hindlimb has been shown to involve the specific recognition of environmental cues, the source of these cues and their mode of acquisition are not known. I show in the accompanying paper (C. Lance-Jones, 1988, Dev. Biol. 126, 394-407) that there is a correlation between the segmental level of origin of motoneurons and the somitic level of origin of the muscle cells of their targets in the chick hindlimb. These data are compatible with the hypothesis that the developmental basis for specific recognition is a positional one. Motoneurons and myogenic cells may be uniquely labeled in accord with their axial level of origin early in development and subsequently matched on the basis of these labels. To test this hypothesis, I have assessed motoneuron projection patterns in the embryonic chick hindlimb after somitic tissue manipulations. In one series of embryos, somitic mesoderm at levels 26-29 or 27-29 was reversed about the anteroposterior axis prior to myogenic cell migration and axon outgrowth. Since previous studies have shown that cells migrate from the somites in accord with their position and that somites 26-29 populate anterior thigh musculature, this operation will have reversed the somitic level of origin of anterior thigh muscles. Retrograde HRP labeling of projections to anterior thigh muscles at stage (st) 30 and st 35-38 showed that motoneuron projections were largely normal. This finding suggests that limb muscle cells or their source, the somites, do not contain the cues responsible for specific recognition prior to myogenic cell migration and axon outgrowth. To confirm that specific guidance cues were still intact after somitic mesoderm reversal, I also assessed motoneuron projections in embryos where somitic tissue plus adjacent spinal cord segments at levels 26-29 were reversed in a similar manner. Analyses of the distribution of retrogradely labeled motoneurons in reversed cord segments at st 35-36 indicated that motoneuron projections were reversed. This finding suggests that motoneurons have altered their course to project to correct targets despite the altered somitic origin of their targets and, thus, that specific guidance cues were intact. I conclude that if cues governing target or pathway choice are encoded positionally then they must be associated with other embryonic tissues such as the connective tissues or that guidance cues are acquired by myogenic cells after the onset of migration and motoneuron specification.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号