首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of absorption on polarization effects in light scattering from human red blood cells
Authors:Rein Kilkson  William S. Bickel  Wayburn S. Jeter  Mary E. Stafford
Affiliation:Departments of Physics and Microbiology, University of Arizona, Tucson, AZ 85721, U.S.A.
Abstract:Polarization effects in light scattering are sensitive indicators of cell structure and structural changes in time. In the spectral regions where the optical properties of the scatterers are relatively constant, the scattering pattern scales, it contracts or expands in a predictable manner as a function of the wavelength. In the spectral regions where the optical properties are strongly wavelength dependent (near absorption bands, etc.) the scattering curves do not scale, but change drastically in phase and amplitude as the wavelength is varied. Reported here is an empirical study of the magnitude of the influence of absorption on the polarization effects in light scattering. Scattering curves have been obtained for human red blood cells in the absorption band (blue light) and far from the absorption band (red light). The scattering at these wavelengths shows very strong nonscaling differences. These observations suggest the use of polarization effects in light scattering and their wavelength dependence for the studies of structural changes in cell nuclei. Nucleoproteins have strong absorption, optical rotatory dispersion and circular dichroism bands in the ultraviolet region of the spectrum, whereas there is little ψ-dependence in the visible range. There is also the possibility of binding specific chromophoric dyes to cell components, thus introducing absorption bands in the visible range, where scattering instrumentation and laser light sources are more readily available.
Keywords:Absorption  Light scattering  Polarization effect  (Red blood cells)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号