首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of Ischemia In vivo and Oxygen-Glucose Deprivation In vitro on NOS Pools in the Spinal Cord: Comparative Study
Authors:Mária Kolesárová  Jaroslav Pavel  Nadežda Lukáčová  Dalibor Kolesár  Jozef Maršala
Institution:(1) Institute of Neurobiology, Slovak Academy of Science, Šoltésovej 4, 040 01 Košice, Slovak Republic;(2) Institute of Neurobiology, Slovak Academy of Science, Šoltésovej 4, 040 01 Košice, Slovak Republic
Abstract:1. This study was performed to compare both the Ca2+-dependent nitric oxide synthase (NOS) activity and the neuronal nitric oxide synthase immunoreactivity (nNOS-IR) in the rabbit lumbosacral spinal cord after 15 min abdominal aorta occlusion (ischemia in vivo) and oxygen-glucose deprivation of the spinal cord slices for 45 and 60 min (ischemia in vitro). All ischemic periods were followed by 15, 30 and 60 min reoxygenation in vitro.2. Catalytic nitric oxide synthase activity was determined by the conversion of L-14C]arginine to L-14C]citrulline. Neuronal nitric oxide synthase immunoreactivity in the spinal cord was detected by incubation of sections with polyclonal sheep-nNOS-primary antibody and biotinylated anti-sheep secondary antibody.3. Our results show that ischemia in vivo and the oxygen-glucose deprivation of spinal cord slices in vitro result in a time-dependent loss of constitutive NOS activity with a partial restoration of enzyme activity during 15 and 45 min ischemia followed by 30 min of reoxygenation. A significant decrease of enzyme activity was found during 60 min ischemia alone, which persisted up to 1 h of oxygen-glucose restoration. The upregulation of neuronal nitric oxide synthase was observed in the ventral horn motoneurons after all ischemic periods. The remarkable changes in optical density of neuronal nitric oxide synthase immunoreactive motoneurons were observed after 45 and 60 min ischemia in vitro followed by 30 and 60 min reoxygenation.4. Our results suggest that the oxygen-glucose deprivation followed by reoxygenation in the spinal cord is adequately sensitive to monitor ischemia/reperfusion changes. It seems that 15 min ischemia in vivo and 45 min ischemia in vitro cause reversible changes, while the decline of Ca2+-dependent nitric oxide synthase activity after 60 min ischemic insult suggests irreversible alterations. Abbreviations: ACSF, artificial cerebrospinal fluid; ATP, adenosine triphosphate; DAB, diaminobenzidine-tetrahydrochloride; DTT, dithiothreitol; EDTA, ethylenediaminetetraacetic acid; eNOS, endothelial nitric oxide synthase; FAD, flavin adenine dinucleotide; H4B, tetrahydrobiopterin; iNOS, inducible nitric oxide synthase; NADPH, nicotinamide adenine dinucleotide phosphate; NMDA, N-methyl-D-aspartate; NO, nitric oxide; NOS, nitric oxide synthase; nNOS, neuronal nitric oxide synthase; NOS-IR, nitric oxide synthase immunoreactivity; PBS, phosphate-buffered saline; PTFE, polytetrafluoroethylene
Keywords:catalytic NOS activity  spinal cord slices  oxygen-glucose deprivation  reoxygenation  motoneurons
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号