首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The pattern of neural crest advance in the cecum and colon
Authors:Druckenbrod Noah R  Epstein Miles L
Institution:Department of Anatomy, and Neuroscience Training Program, University of Wisconsin Medical School, Madison, WI 53706, USA.
Abstract:Neural crest cells leave the hindbrain, enter the gut mesenchyme at the pharynx, and migrate as strands of cells to the terminal bowel to form the enteric nervous system. We generated embryos containing fluorescent enteric neural crest-derived cells (ENCCs) by mating Wnt1-Cre mice with Rosa-floxed-YFP mice and investigated ENCC behavior in the intact gut of mouse embryos using time-lapse fluorescent microscopy. With respect to the entire gut, we have found that ENCCs in the cecum and proximal colon behave uniquely. ENCCs migrating caudally through either the ileum, or caudal colon, are gradually advancing populations of strands displaying largely unpredictable local trajectories. However, in the cecum, advancing ENCCs pause for approximately 12 h, and then display an invariable pattern of migration to distinct regions of the cecum and proximal colon. In addition, while most ENCCs migrating through other regions of the gut remain interconnected as strands; ENCCs initially migrating through the cecum and proximal colon fragment from the main population and advance as isolated single cells. These cells aggregate into groups isolated from the main network, and eventually extend strands themselves to reestablish a network in the mid-colon. As the advancing network of ENCCs reaches the terminal bowel, strands of sacral crest cells extend, and intersect with vagal crest to bridge the small space between. We found a relationship between ENCC number, interaction, and migratory behavior by utilizing endogenously isolated strands and by making cuts along the ENCC wavefront. Depending on the number of cells, the ENCCs aggregated, proliferated, and extended strands to advance the wavefront. Our results show that interactions between ENCCs are important for regulating behaviors necessary for their advancement.
Keywords:Enteric nervous system  Neural development  YFP  Wnt1  Cre recombinase  Neural crest  Strand migration  Cecum  Population pressure  GDNF  Endothelin
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号