首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Methylmalonic acid administration induces DNA damage in rat brain and kidney
Authors:Vanessa M Andrade  Hugo S Dal Pont  Daniela D Leffa  Adriani P Damiani  Giselli Scaini  Giana Hainzenreder  Emilio L Streck  Gustavo C Ferreira  Patrícia F Schuck
Institution:1. Laboratório de Biologia Celular e Molecular, Programa de Pós-Gradua??o em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
2. Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Gradua??o em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, Bloco S, Sala 6, Criciúma, SC, CEP 88806-000, Brazil
3. Laboratório de Bioenergética, Programa de Pós-Gradua??o em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Abstract:Accumulation of methylmalonic acid (MMA) in tissues and biological fluids is the biochemical hallmark of methylmalonic aciduria. Affected patients present renal failure and severe neurological findings. Considering that the underlying pathomechanisms of tissue damage are not yet understood, in the present work we assessed the in vivo e in vitro effects of MMA on DNA damage in brain and kidney, as well as on p53 and caspase 3 levels, in the presence or absence of gentamicin (acute renal failure model). For in vitro studies, tissue prisms were incubated in the presence of different concentrations of MMA and/or gentamicin for one hour. For in vivo studies, animals received a single injection of gentamicin (70 mg/kg) and/or three injections of MMA (1.67 μmol/g; 11 h interval between injections). The animals were killed 1 h after the last MMA injection. Controls received saline in the same volumes. DNA damage was analyzed by the comet assay. We found that MMA and gentamicin alone or combined in vitro increased DNA damage in cerebral cortex and kidney of rats. Furthermore, MMA administration increased DNA damage in both brain and kidney. Gentamicin per se induced DNA damage only in kidney, and the association of MMA plus gentamicin also caused DNA damage in cerebral cortex and kidney. On the other hand, p53 and caspase 3 levels were not altered by the administration of MMA and/or gentamicin. Our findings provide evidence that DNA damage may contribute to the neurological and renal damage found in patients affected by methylmalonic aciduria.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号